Practical 9 Worksheet
[bookmark: _Hlk169176912]Rose-Hulman Institute of Technology - CSSE 232 Computer Architecture

Names: ___ Section: ____

NOTE: follow instructions on the practical web page, it will have more details than this document.

R-type Data Hazards
1.2 (5 points) – Circle potential dependencies in this code, create a pipeline diagram for the code, and mark how you intend to solve the data hazards (forwarding and write-before-read).
sub x2, x1, x3
and x12, x2, x5
or x13, x6, x2
add x14, x2, x2
sw x15, 100(x2)

1.4 (3 points) – Compare the test_no_hazard_detection() and test_write_then_read_hazard_detection() tests. One difference is the expected value of register x14 at the end of the test. Explain why each test expects a different value, and why the write-then-read behavior produces the “correct” value for the executed program.

2.5 (2 points) – Describe the process you plan to follow to incrementally address data hazards in your pipeline for R-type instructions. If you’re not sure what process to follow, review the comments in the ASM file (test_datahaz_x2.asm) and the Test Bench (tb_Pipe_hazards.v).

3.2 (3 points) – Write some pseudocode that describes how you will detect the need to forward data to one of the two register operands (A or B) when an instruction in EX needs data from WB.

4.8 (4 points) lw -> sw forwarding: explain any hazards that may occur when sw uses the data loaded by lw. Specifically, how would you detect and solve these two dependencies?
lw x14, 24(x2)
sw x14, 100(x2)

lw x14, 24(x2)
sw x10, 100(x14)

5.1 (4 points) Draw a pipeline diagram for this code and indicate any data forwarding, stalls, or flushes.
beq x1, x0, 16
and x12, x2, x5
or x13, x6, x2
add x14, x2, x2
lw x4, 100(x7)

6.1 (5 points) Compile the following C code into RISC-V instructions:
// Be sure to update them when they change.
// Array A’s address should be put in x5
int[] A = {1, 2, 3, 4, 5};
int idx = 0;
while(idx < 5) {
 A[idx] = A[idx] + 1;
 idx = idx + 1;
}

6.6 (3 points) Explain how you plan to test that relPrime works; specifically, how will pass the input argument to your program from the test bench, and how will your test bench know when the program has finished running (so it can check the result)?

7.1 (10 points) Document your new instruction here. Explain it’s use, pneumonic, and behavior (including symbolically, like on the green sheet). You should also discuss any hazards that your instructions may cause, will you need to adjust your forwarding/hazard units?

7.2 (4 points) Explain how you expect this new instruction to affect the performance of your processor.

7.5 (5 points) Compare the runtime (in number of cycles) of relPrime under the base RISC-V ISA and with your new instruction.

8.1-3 (+10 points) MMIO, see the practical instructions for the details of what to include for this. This is a bonus problem.
We did not do this problem <- delete this if you actually attempt this bonus.

General Practical Questions:
1. (Need) (3 points) Do all pipelined processors need forwarding and hazard detection?

2. (Performance) (3 points) How will adding more stages to a pipelined processor affect the performance when we take into account potential stalls and forwards?

3. (Correctness) (3 points) What error/bug was the hardest to track down? How did the tests (provided or that you created) help you track down the error?

4. (Iteration) (3 points)
Why do you think the practicals have had you solve one hazard at a time? Did you ever break this plan (e.g. by more data forwarding early)? Discuss why you did that and if you think it was okay.

5. What is the git commit ID for your final commit of your code. This is required to pass the assignment. Check Practical 1 for instructions on how to get the correct commit ID.

