CSSE 220

Sorting Algorithms
Algorithm Analysis and Big-O
Searching

Import SortingAndSearching project from repo

Questions?

WHAT IS SORTING?

WHY STUDY SORTING?

* At least 5 well-known algorithms that have the
same functionality:
1. Selection sort
2. Insertion sort
3. Merge sort
4. Quick sort
5. Heap sort
e Can do an analysis of each algorithm and
compare the results
e Sorting is done every day all the time — think of
the results of a google search

Course Goals for Sorting:
You should...

* Be ableto basic sorting algorithms:
— Selection sort — O(N?)
— Insertion sort — O(N?)
— Merge sort — O(N * log,(N))

* Know the of each

 Know the inputs for each

Course Goals for Sorting:
You should...

e Sorting Terminology:
— Non-decreasing: use <
— Non-increasing: use 2

Input Size Logrithmic Linear Quadratic
n log2(n) n n*log2(n) nh2
1 0.00 1 0 1
10 3.32 10 33 100
100 6.64 100 664 10,000
1,000 9.97 1,000 9,966 1,000,000
10,000 13.29 10,000 132,877 100,000,000
100,000 16.61 100,000 1,660,964 10,000,000,000
1,000,000 19.93 1,000,000 19,931,565 1,000,000,000,000
10,000,000 23.25 10,000,000 232,534,967 100,000,000,000,000
100,000,000 26.58 100,000,000 2,657,542,476 10,000,000,000,000,000

Selection Sort

 Basic idea:

— Think of the 4st array as having a
— sorted part (at the beginning) and an unsorted part

(the rest)
0 1 2 3 4 5 6 7 8 9
38 |44 [87 [[[2033 [99 1500 [100 [90 |239 [748
— Find the value
in the unsorted part
— Move it to the of the Repeat until
sorted part (making the [JEUESACEREERSE
sorted part bigger and the empty
unsorted part smaller)

Profiling Selection Sort

. collecting data on the run-time
behavior of an algorithm

* |n Eclipse, determine how long does selection
sort take on:
— 10,000 elements?
— 20,000 elements?

— 80,000 elements?

Performance Analysis Basics

Come up with a math function f(n) such that it
does the following:

* input: n = size of the problem to be solved by

the algorithm y=tw
|
e output: y = f(n) - the I1 % ;i
. . -, _ (+,+)
number of instructions ' T o
76 545271 1384567
executed 1l
IIT) TV
* Only care about ST TS
D

Quad I'a nt I n - size of input -

v = f(n) - number of mstructions executed

Analyzing Selection Sort

. calculating the performance of an
algorithm by studying how it works, typically
mathematically

* Typically we want the performance as a
function of input size

 Example: For an array of length n, how many times
does selectionSort() call compareTo()?

* Look at number of times compareTo() is called as a
shortcut way to determine the Big-O

Summation Notation & Facts

Open form
n /

2”‘ (n + 1)
3
k = nEAn < Closed form

2 Induction is used to prove this

Summation Notation & Facts
=1

D k=
=0

/ Open form

n-—1
Zk=0+1+2+"-+n—1
0

Induction is used to prove this

Z nx (" — 1) < Closed form

Big-Oh Notation

* |n analysis of algorithms we care about
differences between algorithms on very large
Inputs, i.e., asn —

* We say, “selection sort takes on the order of
n? steps”

* Big-Oh gives a formal definition for
“on the order of”

Formally

We write ,and
say

if there exists positive constants c and

0<f(n)<cg(n)
foralln>ng

gisa on f

-

Running Time

such that

Mg [nput Size

o Insertion Sort
 Basicidea:

— Think of the 4st array as having
a sorted part (at the beginning) and an unsorted part

(the rest)
0 1 2 3 4 5 6 7 8 9
38 [44 187 [[[2033 |99 1500 | 100 |90 [239 | 748

— Get the value in the

unsorted part Repeat until
— Insert it into the unsorted part

location in the sorted part, Is empty

moving larger values up to

make room

Insertion Sort Exercise

insertion sort

insertion sort assuming the inner while
loop runs the maximum number of times

 What input causes the worst case behavior?
The best case?

* Does the input affect selection sort?

Ask for help if you’re stuck!

Searching

* Consider:
— Find China Express’s number in the phone book
— Find who has the number 208-2063

* |s one task harder than the other? Why?

* For searching unsorted data, what’s the worst
case number of comparisons we would have
to make?

— Brute force approach is required

Binary Search of Sorted Data

* A strategy

* Basic idea:
— Divide the 4st array in half

— Decide whether result should be in upper or lower
half

— Recursively search that half

Analyzing Binary Search

Binary search assuming the value
searched for is at the start or end of the #st array

* Question: How many times can you divide a
number by 2, and then repeatedly divide the
result by 2 until the result <17?

 What's the best case of Binary Search?

 What’s the worst case Binary Search?

Study MergeSort for next class

WORK TIME

