
CSSE 220

Interfaces and Polymorphism

Import Interfaces from the repo

Object-Oriented Programming

• The three pillars of Object-Oriented
Programming

– Encapsulation (already covered)

– Polymorphism (start idea today)

– Inheritance (next week)

Interfaces – What, When, Why, How?

• What:
– Code structure that looks like a class
– Used to express operations that multiple classes have in

common

• Differences from classes:
– No fields.
– Methods contain no code.

• When:
– When abstracting an idea that has multiple, different

implementations

Generic Notation: In Code
public interface InterfaceName{

/**
* regular javadocs
*/
void methodName(int x, int y);

/**
* regular javadocs here
*/
int doSomething(Graphics2D g);

}

public class SomeClass implements InterfaceName {
…

}

No method
body, just a
semi-colon

Automatically
public, so we

don’t specify it

SomeClass promises to implement all the methods
declared in the InterfaceName interface

Interface Types: Key Idea

• Interface types are like contracts

• A class can promise to implement an interface

• Any code that uses the interface can
automatically use new classes that implement
the interface!

Why?

• Interfaces help to reduce coupling by tying
your code to the interface, not the class
implementation.

Q1

Principles of Design (for CSSE220)
• Make sure your design allows proper functionality

– Must be able to store required information (one/many to one/many
relationships)

– Must be able to access the required information to accomplish tasks
– Data should not be duplicated (id/identifiers are OK!)

• Structure design around the data to be stored

– Nouns should become classes
– Classes should have intelligent behaviors (methods) that may operate on their

data
• Functionality should be distributed efficiently

– No class/part should get too large
– Each class should have a single responsibility it accomplishes

• Minimize dependencies between objects when it does not disrupt usability or extendability

– Tell don't ask
– Don't have message chains

• Don't duplicate code

– Similar "chunks" of code should be unified into functions
– Classes with similar features should be given common interfaces
– Classes with similar internals should be simplified using inheritance

Open simpleExample

• Live-coding

– will arrive at solution in InterfaceSolution

– feel free to just watch if you prefer

– we will remove duplicate CODE (not data)

NumberSequence Example

• Your turn to implement an existing interface

– Study code

– Complete TODOs in order

– Let me know if you complete them all

Interface Types can replace class types
• If Dog & Cat implement the Pet interface:

1. Variable Declaration:

• Pet d = new Dog(); Pet c = new Cat();

2. Parameters:

• public static void feedPet(Pet p) {…}
Can call with any object of type Pet:

• feedPet(new Dog()); feedPet(c); // from above

3. Fields:

• private Pet pet;

4. Generic Type Parameters:

• ArrayList<Pet> pets = new ArrayList<Pet>();

• pets.add(new Dog()); pets.add(new Cat());

Check your understanding…

public interface Pet{
private String name;

public Pet(String name){
this.name = name;

}

public void speak(){
System.out.println(name);

}
} Is this interface valid? Why or why not?

Valid interface

public interface Pet{

public void speak();

}

What happened to name?

A valid Pet with a name

public class Cat implements Pet {
private String name;

public Cat(String name){
this.name = name;

}

public void speak(){
System.out.println(name);

}
}

Why is this OK?

Pet p = new Dog();
p.feed();

p = new Cat();
p.feed();

p = new Pet(); // NO!

• Any child type may be stored into a variable of
a parent type, but not the other way around.

– A Dog is a Pet, and a Cat is a Pet, but a Pet is not
required to be a Dog or a Cat.

– And how could you construct a Pet? Q2

Notation: In UML

• Closed triangle with a dashed line in

UML is an “is-a” relationship

• Read this as:

InterImpl is-an InterfaceName

No need to repeat method names in

classes that implement them, it is

implies by the arrow.

Q3

http://www.plantuml.com/plantuml/uml/JOxD2i8m383lUOeUvsKl8CWGGT_0SsmpLjQrCqaBehwxhU3F9P3l-mWPH94rBm5azd55niM8tWBLoTw-pIaLOiiugkdxnyuSs1Uy10Am0KNCdxy3F05yLE8HBNtJAahopgnPfYDAjzd-zZtZJ8sub5kgcUDv8WhT1oI-Pgf1EpvGTFMf5m00
http://www.plantuml.com/plantuml/uml/JOxD2i8m383lUOeUvsKl8CWGGT_0SsmpLjQrCqaBehwxhU3F9P3l-mWPH94rBm5azd55niM8tWBLoTw-pIaLOiiugkdxnyuSs1Uy10Am0KNCdxy3F05yLE8HBNtJAahopgnPfYDAjzd-zZtZJ8sub5kgcUDv8WhT1oI-Pgf1EpvGTFMf5m00

In the following scenario we have a Pet Zoo, with a Zookeeper who is in charge

of feeding different types of animals. When the simulator runs, various pets are

made and fed. Also, there is a way to count the number of pets that are

eating. The animals include cats, dogs, and fish. All the animals have names,

and can be told to eat food, as well as report that they are eating (once fed they

always report eating). Show how an improved approach using interfaces can

remove code duplication from the following design.

http://www.plantuml.com/plantuml/img/hPB1JiCm38RlUGfhfnI9FK0EqoHWDn0IDswcyKhKDfcQ30cXlJjso6WNQRTTKlTpy__ndsvZmYaTnq75tla3JZX2JDy3yJgvDdTKEs2Cy4hf6Pt_KG0ZziIlKJTWu2iuosnFP6lMXgDF0fymET_DhLFHV0-X9phG12BhSIH-p50BQOhu0oRTOZB0HNDX-nWwRKDdW8lBpix5JxtdnO2KSnFu26KWkDyiBDLShjSRyQe8UrH4b9TYgxjL_gf28bMXlBD4mJiaWtC8u4feKik0kG4I1X2cNGXMByPn_n4R-0XX8FI2Eqell4te6zydgvtKsP3FSzLGihwTuP-V37lLC5_KpHotvAtykRy0
http://www.plantuml.com/plantuml/img/hPB1JiCm38RlUGfhfnI9FK0EqoHWDn0IDswcyKhKDfcQ30cXlJjso6WNQRTTKlTpy__ndsvZmYaTnq75tla3JZX2JDy3yJgvDdTKEs2Cy4hf6Pt_KG0ZziIlKJTWu2iuosnFP6lMXgDF0fymET_DhLFHV0-X9phG12BhSIH-p50BQOhu0oRTOZB0HNDX-nWwRKDdW8lBpix5JxtdnO2KSnFu26KWkDyiBDLShjSRyQe8UrH4b9TYgxjL_gf28bMXlBD4mJiaWtC8u4feKik0kG4I1X2cNGXMByPn_n4R-0XX8FI2Eqell4te6zydgvtKsP3FSzLGihwTuP-V37lLC5_KpHotvAtykRy0

Solution

Q4

http://www.plantuml.com/plantuml/img/TL91JiCm4Bpx5QkU72JwWAgAAW6LE82Gk75RacsmajYHlKL2mD_PJLkRWdg9FJEUqNgSJMACl1y7athd9umuGkAFWUGRNJChfXam9NWYVa3dFmt0Y3q9JBQ25Rm7rmgt8sh_SatOUrRo3jdvhaZVfz2N47gYYQB6UXn9binP9QgIRIVYgYGS1xgkYyFa7IoNjOwSZyt4RUZEy0to6Twwz9O92LvSBGuXOfG3NuT8SHMWbeACkVTCSOSDAORrsfrmNUiTWP2t8RIsoYs1o_siu3M4WT0htH4_IW7AFijZ-AxK9kFCOSV6SeBkHREp05KnoCWN3QBzD-YrBZfK_6NPa6_rH_a1
http://www.plantuml.com/plantuml/img/TL91JiCm4Bpx5QkU72JwWAgAAW6LE82Gk75RacsmajYHlKL2mD_PJLkRWdg9FJEUqNgSJMACl1y7athd9umuGkAFWUGRNJChfXam9NWYVa3dFmt0Y3q9JBQ25Rm7rmgt8sh_SatOUrRo3jdvhaZVfz2N47gYYQB6UXn9binP9QgIRIVYgYGS1xgkYyFa7IoNjOwSZyt4RUZEy0to6Twwz9O92LvSBGuXOfG3NuT8SHMWbeACkVTCSOSDAORrsfrmNUiTWP2t8RIsoYs1o_siu3M4WT0htH4_IW7AFijZ-AxK9kFCOSV6SeBkHREp05KnoCWN3QBzD-YrBZfK_6NPa6_rH_a1

Solution

1 of List<Pet> in PetMain

Method makePets()

still must directly call

constructor for Dog,

Cat, and Fish

That’s why we have

the 3 dependency arrows

Method feedPet()

calls eatFood() from Pet

That’s why we have

this dependency arrow

Code this in the pets project!

http://www.plantuml.com/plantuml/img/TL91JiCm4Bpx5QkU72JwWAgAAW6LE82Gk75RacsmajYHlKL2mD_PJLkRWdg9FJEUqNgSJMACl1y7athd9umuGkAFWUGRNJChfXam9NWYVa3dFmt0Y3q9JBQ25Rm7rmgt8sh_SatOUrRo3jdvhaZVfz2N47gYYQB6UXn9binP9QgIRIVYgYGS1xgkYyFa7IoNjOwSZyt4RUZEy0to6Twwz9O92LvSBGuXOfG3NuT8SHMWbeACkVTCSOSDAORrsfrmNUiTWP2t8RIsoYs1o_siu3M4WT0htH4_IW7AFijZ-AxK9kFCOSV6SeBkHREp05KnoCWN3QBzD-YrBZfK_6NPa6_rH_a1
http://www.plantuml.com/plantuml/img/TL91JiCm4Bpx5QkU72JwWAgAAW6LE82Gk75RacsmajYHlKL2mD_PJLkRWdg9FJEUqNgSJMACl1y7athd9umuGkAFWUGRNJChfXam9NWYVa3dFmt0Y3q9JBQ25Rm7rmgt8sh_SatOUrRo3jdvhaZVfz2N47gYYQB6UXn9binP9QgIRIVYgYGS1xgkYyFa7IoNjOwSZyt4RUZEy0to6Twwz9O92LvSBGuXOfG3NuT8SHMWbeACkVTCSOSDAORrsfrmNUiTWP2t8RIsoYs1o_siu3M4WT0htH4_IW7AFijZ-AxK9kFCOSV6SeBkHREp05KnoCWN3QBzD-YrBZfK_6NPa6_rH_a1

Polymorphism! (A quick intro)

• Etymology:

– Poly many

– Morphism  shape

• Polymorphism means: An Interface can take
many shapes.

– A Pet variable could actually contain a Cat, Dog, or
Fish

Polymorphic method calls

• pet.feed() could call:
– Dog’s feed()

– Cat’s feed()

– Fish’s feed()

• Your code is well designed if:
– You don’t need to know which implementation is

used.

– The end result is the same. (“pet is fed”)

Q5

How does all this help reuse?
• Can pass an instance of a class where an interface type is expected

– But only if the class implements the interface

• We could add new functions to a NumberSequence’s abilities without
changing the runner itself.
– Sort of like application “plug-ins”

• We can use a new Pet interface without changing the method that uses the
Pet instance. (When adding a Zebra class to PetMain, Zookeeper does not
have to change!)

• Use interface types for field, method parameter, and return types
whenever possible. Like Pet instead of Dog, and List for ArrayList.
– List<Pet> pets= new ArrayList<Pet>();

• Next time: because of interfaces, we can add classes that listen for Button
presses and mouse clicks, without changing the Button or window.

