
CSSE 220

Collision Handling without instanceof

Checkout InheritanceDesign project from public Git

The specific problem

• Players can blow Bubbles.

• Bubbles can capture monsters.

• Players can pop ‘Bubbled’ monsters.

• Players can be killed by free monsters.

• Players can take powerups.

So many collisions! How do we handle them all?

Handling Collisions in General

• Many ways it can be done

• Good design principles

– Make it easy to use and extend code

• Functional but bad design principles

– Use “type predicated code”

– … if (“instanceof, getClass(), getType()” ==/equals)

– OUTLAWED in your project design!

– Your design should not use these at all!

Live Coding

• Let’s consider a simulator with collisions

• More Raindrops More Platforms

• Run Main.java

Extend Functionality

• Implement an InvincibilityDrop

– makes a BouncingPlatform invincible for 50 ticks

– drops should not affect platforms when invincible

– color should be Yellow

– size should be 20

– absorbed by UserControlledPlatform like others

GameComponent.java

• Let’s look how collisions are handled

• Where would changes in code need to happen?

• Look for examples of “type predicated code”

– Why is this hard to use/extend?

Collision Chart

UserPlat BouncePlat DamageDrop HealDrop

UserPlat

BouncePlat

DamageDrop

HealDrop

When do collisions happen?

Collision Chart

UserPlat BouncePlat DamageDrop HealDrop

UserPlat X X

BouncePlat X X

DamageDrop X X

HealDrop X X

When do collisions happen?

Collision Chart

UserPlat BouncePlat DamageDrop HealDrop

UserPlat X X

BouncePlat X X

DamageDrop X X

HealDrop X X

When we have multiple objects that interact with the same

object, we can use inheritance to help us make a design to

deal with the collisions. We should have the classes that

differ provide the functionality to deal with the collisions.

Collision Chart

When we have multiple objects that interact with the same

object, we can use inheritance to help us make a design to

deal with the collisions. We should have the classes that

differ provide the functionality to deal with the collisions.

So in this case, the different drops (and InvincibilityDrop)

differ in how they affect the platform. Thus, we can could

create an abstract class and require an implementation of

the collideWith(BouncingPlatform) method. Similarly, we can

provide a collideWith(UserControlledPlatform) method, this

will allow us to put the code in the drop classes and make

the processing MUCH cleaner as we will see.

Live-coding

Design Activity

• Hand out

In the game Bomberman, everything has special behavior if
caught in a bomb explosion. Heroes die and restart the level,
monsters are killed and score points, walls are destroyed,
and bombs explode themselves. In the design below, the
Bomb class has an onExplosion method that handles this
behavior and (you can assume) works correctly.

Collision Code
for(GameObject g : getObjectsWithinBombExplosion()) {

if(g instanceof Bomb) {
// bomb specific code

}
if(g instanceof Wall) {

//wall specific code
}
//pattern continues...
}

1. What is wrong with the design?

2. Propose a new design that does not have the problem you identified in #1. You

only need include in your UML diagram classes that are *different* from their

version in the given diagram.

Also include a sample for what the analogous code on onExplosion looks like

TEAM PROJECT

Work time

Be sure everyone is getting a chance to drive.

Platforms and Drops

• What if we wanted Platforms to collide as well?

UserPlat BouncePlat DamageDrop HealDrop

UserPlat X X X

BouncePlat X X X X

DamageDrop X X

HealDrop X X

Platforms and Drops
• AbstractPlatform and AbstractDrop

– Subclasses implement

– collideWith(AbstractPlatform)

UserPlat BouncePlat DamageDrop HealDrop

UserPlat X X X

BouncePlat X X X X

DamageDrop X X

HealDrop X X

