
CSSE220 BubbleBobble programming
assignment – Team Project

You will write a game that is patterned off the Bubble Bobble game. You can find a description of the
game, and much more information here:

https://en.wikipedia.org/wiki/Bubble_Bobble

You can also find an online playable version of the game here:

https://www.classicgamesarcade.com/game/21605/bubble-bobble.html

Table of Contents
Essential features of your program .. 3

Nice features to add ...3
Additional features that you might add include ... 3

A major goal of this project.. Error! Bookmark not defined.
Parallel work .. Error! Bookmark not defined.
Development cycles ... Error! Bookmark not defined.

Milestones (all due at the beginning of class, except as noted) ... 4
Milestone 0: UML Class Diagram ...4
Milestone 1: Levels ...4
Milestone 2: Hero and Monster ..5
Milestone 3: More ..5

https://www.classicgamesarcade.com/game/21605/bubble-bobble.html

Milestone 4: Extras! ...5

Status Reports, Code-in-progress and Team Evaluations .. 5

Teamwork and grading .. 5

Final Working Software ... Error! Bookmark not defined.

Presentation.. 6

Grade components .. 7

Essential features of your program
Your graphics do not have to be fancy such as figures that animate or look like the original graphics.
Actually, everything could just be represented by different colored rectangles/circles etc. You are
graded on the functionality your program implements including:

• A “hero” who moves and jumps, stands on platforms, falls
• The ability to fire bubbles
• The classic game a bunch of monster types. Your game needs only 2 monsters, movement does

not need to match the movement of the original game, but monsters should be able to jump
and should not get stuck in corners. The second type of monster should be able to shoot.

• Monsters that are hit by bubbles should be trapped and float slowly to the top of the screen.
Trapped monsters when touched by the players should be killed. Eventually, if not touched by
the players trapped monsters should be freed.

• When killed monsters should drop fruit. Picking up fruit should give the player points.
• Your game should load pre-created levels with planned configurations of the board and

enemies. Different levels should have different numbers of monsters and different positions of
tunnels. You do not have to exactly match the levels of the real game. A level should be
representable by a text file. Such a file can be passed to a Level constructor method to create
that level. A level file should include the starting locations of the hero, monsters, and power-
ups. When the user selects "Play Game", the program should open the Level 1 file, and build the
board layout based on what is in that file. Your levels do NOT need to scroll.

• Contact with the monsters kills the hero. When the hero dies, he and the monsters return to
the start position. After a certain number of deaths, the player loses and must restart the game
from the beginning.

• Defeating all the enemies on the level should take you to the next level.
• The game should have a score that’s displayed. Killing monsters should increase the score.
• Pressing the U key should cause the game to go up to the next level; the D key takes you down

to the previous level. These features are not in the sample game, but they will be very helpful
for your (and your instructor's) testing of your game.

Nice features to add
For this project we would like you to go beyond the minimum functionality and add some features that
seem exciting and fun to you. If you accomplish only the “essential” features, you’ll only get 85% of the
functionality credit. To get to a full 100%, add some more features. If you implement a lot of features
you can even get a little extra credit.

Additional features that you might add include
• Images for the player, monsters, environment, power-ups
• Different kinds of weapons
• Even more qualitatively different kinds of enemies

• Different kinds of power-ups
• Save the game that is in progress, and load previously saved games
• High score list, where you can enter your initials after a successful game (maybe even that saves

between different runs)
• Help screen that explains the keys (this is a minor one)
• Start screen with cool animations
• Animation of sprites that represent the characters
• Boss fight level where you must defeat a giant enemy
• Something creative that you want to add

Milestones
Key points:

1. To get credit for the milestones, every student should have submitted code (we estimate at least 50
lines per person per milestone)

2. The code submitted must work (i.e. should compile and run directly with no special tricks)

Milestone 0: UML Class Diagram
1. Brainstorm possible classes. (We would guess that you will come up with about 6-10 classes but more
are certainly possible)

2. Assign responsibilities to classes; determine how classes need to collaborate in order to carry out
those responsibilities, and what responsibilities those collaborating classes need to have. Will
inheritance or interfaces help you to organize the responsibilities? Keep iterating this until all of the
program's responsibilities have been assigned to classes.

3. Collect the information into a UML class diagram. Your diagram MUST be computer generated – use
UMLet (easy drag and drop) or PlantUML (sort of a coding language which is what we use to generate
diagrams for class)

Save your diagram as a PDF or JPG file.

Begin implementing, commenting, and testing your code, cycle by cycle. We’ve included suggestions for
what an appropriate amount of functionality for each cycle would be – but feel free to get ahead of us
(especially if you’ve got a particularly cool extra feature planned). If you want to do features in a
different order – get permission from your TA or professor.

Document your code as you go along.

Milestone 1: Levels
Minimum functionality:

• A hero that can move jump, land on platforms, fall

• Levels that are loaded from a file
• Switching between levels with U and D

Milestone 2: Monster start
Minimum functionality:

• Hero shoots bubbles
• 2 kinds of Monsters that move in a reasonable way and shoot bullets
• You might want to get started on basic collisions (e.g. monsters kill hero) but it won’t be

checked till next cycle

Milestone 3: Collisions
Minimum functionality:

• Bullets/monsters that kill player
• Trapping monsters, killing monsters, getting fruit, monsters freeing themselves

Milestone 4: Extras!
Minimum functionality:

• Moving between levels on monster killing
• Score
• Whatever features you team wants to add!

Code-in-progress
Your code should always run after each milestone deadline. Your code should always be well designed
and use good style. Be aware that your design and style will be evaluated at the end of the course.

Teamwork and grading
This assignment will be done by two-to-three-person teams. Our intention is not that you "divide and
conquer" so much as that you have someone to talk with as you write and test this program. If you have
not already done so, read this short article on Pair Programming and discuss it with your partners:
http://en.wikipedia.org/wiki/Pair_programming. In particular, note what it says about who should be
the driver if you are a "mismatched pair."

All code that you submit for this project should be understood by all team members. It is your
responsibility to (a) Not submit anything without first discussing it with your partners, and (b) not let
something your partners write go "over your head" without making a strong effort to understand it,
including having your partners explain it to you of course.

If your team is having a problem with members not working together, please bring it up with your
instructor ASAP. If you let us know at the end, there is little we can do to help.

It is possible that different team members will receive different scores for the project, if there is ample
evidence that one person did not fully participate in the learning and the doing (or that one person
"hijacked" the project by insisting on doing most of it without much help or understanding from the rest
of the team), we reserve the right to give different grades. A peer evaluation survey at the end of the
project will help us determine this. If the survey or our observations indicate that you do not
understand, we may ask you to explain parts of your project code to us.

We will expect your evaluation of your team members at the end of the project to be detailed and
specific. You should be writing it as you go through the project. Make notes of both positive things and
suggestions for improvement. Then when it is time to submit your evaluation, you can mostly just paste
what you have written into the Moodle survey.

Style and Correctness
While implementing great features to your game is fun and important, it is also important that you apply
the object-oriented design principles that you learned in this course to your design and coding. This 50
point section covers such things as code clarity, avoiding duplicated code, high cohesion and low
coupling, and proper use of polymorphism and dynamic dispatch. Therefore, there will be significant
deductions for code that, for example,

• has a few large classes (like Main) with low cohesion,
• uses any static variables to avoid passing objects through parameters,
• uses type-predicated code. That is when one class uses if statements based on the type of

another class (using instanceof, the name of a class, or even a special getType() function that
returns a string or integer code).

• has high coupling (like a class that refers to most other classes),
• is uncommented,

or
• contains any duplicated code whether within a single function (commonly this occurs when

students have blocks of mostly identical code for handling different cardinal directions), mostly
identical functions within a class, or similar functions across different classes. Utility functions or
inheritance should be used to remove this duplicated code.

Presentation
Your team will give a 10-minute presentation on your project, which may be open to the Rose-Hulman
community. Your goals for this presentation are:

• Confidently and professionally describe your results.
• Demonstrate a sampling of the required and additional features that you’ve implemented.
• Show off bonus features that you’ve implemented.

• Describe the basic design of your system and discuss the amount of cohesion and coupling in
your design.

Every team member should play a significant role in the delivery of your presentation.

Keep in mind that all of us have implemented the same basic project, so you won’t have to spend much
time describing the basics of the project.

Grade components
15 points Initial UML diagram
30 each Code functionality for Cycles 1, 2, and 3
140 points Final program functionality and correctness
50 points Style and efficiency
25 points In-class presentation
25 points Thoughtful team evaluation and reflection on the project (individual)
?? Additional features (extra credit)

Disclaimer: This document may be revised in response to student questions/corrections. The latest
version will be considered the authoritative one. If any changes significantly modify or clarify the project
requirements, we will notify all students by email, to make sure that you read the new version of this
document.

	Essential features of your program
	Nice features to add
	Additional features that you might add include

	Milestones
	Milestone 0: UML Class Diagram
	Milestone 1: Levels
	Milestone 2: Monster start
	Milestone 3: Collisions
	Milestone 4: Extras!

	Code-in-progress
	Teamwork and grading
	Style and Correctness
	Presentation
	Grade components

