Basic Analysis of
Algorithms

Curt Clifton
Rose-Hulman Institute of Technology




Recursive Fibonacci

o long fib(int n) {

if (n <= 0) return O; fib(4) fib(3)

if (n==1) return 1; / \ i\
return fib(n-1) + fib(3) fib(2) fib(2) fib(1)
fib(n-2); i / \

] fib(2) fib(1) fb(0) fib(l) fib(0) fib(1)

@ Why so slow? fib(0) fib(1)

Shlemiel the Painter: http://www.joelonsoftware.com/articles/fog0000000319.html




Tail-recursive Fibonacci

o long fib(intn) {
return fibHelp(n, 1, 1, fib(5)
0); '
} fibHelp(5, 1, 1, 0)

o long fibHelp (int n, int m,
long fm, long fmm1l) { fibHelp(5, 2, 1, 1)
if (n <m) return O;
if (n == m) return fm;
return fibHelp (n, m+1,
fm + fmm1l, fm); fibHelp(5, 4, 3, 2)

fibHelp(5, 3, 2, 1)

fibHelp(5, 5, 5, 3)
@ Why so much better?

long maxes out at fib(92) = 7,540,113,804,746,346,429




Can we improve on this?

o staticlong fibLoop (int n) {
if (n <= 0) return O;
if (n==1) return 1;
int m = 1; long fm = 1; long fmm1 = O;
while(m <n) {
m++;
long nextFM = fm + fmm1l;
fmml = fm;
fm = nextFM;
}

return fm;

]

® How much better?




Iteration vs. Recursion

@ Loops often harder to understand than
recursive implementations

@ Engineering tradeoff:
@ Maintainability vs. efficiency

@ “To iterate is human, to recurse divine.”
— L. Peter Deutsch




Cartoon of the Day




Analysis of Algorithms

@ A technique for predicting the approximate
run-time performance of some code

@ Helps in deciding whether efficiency
improvement is worthwhile




Algorithm

@ A well-defined computational procedure that:
o take some value(s) as input and

@ produces some value(s) as output

@ An algorithm is a fool for solving a
computational problem

Reminder of slides based on [Cormen, Leiserson, and Rivest, 1990]




The Fibonacci Problem

@ Input: a natural number n

@ Output: fib(n) where fib is defined by

&Y ifn=0
fib(n) =41 if 7"l
| fib(n—1) + fib(n—2) otherwise




The Array Search
Problem

@ Input:
@ A sorted array of integers a[0], ..., a[n-1]
@ and an integer m

@ Output:
@ An index i such that ali] == m

@ or -1 if no such i exists




Array Search Solution

o intsearch(int[] a, int m) ® Let a = {2’ 3, 5, 7}
{
int n = a.length; \
for (int i=0;i<;1; i++) { @ Runtime for m = 2

if (a[i] ==m)
} KRS 1; @ Runtime for m = 5

return -1; .
} @ Runtime for m = 11

@ What things might @ Suppose a has 100
we want to predict elements (n = 100)?

when analyzing this?




Approximating Runtime
- Some Assumptions

@ One processor
@ Unlimited memory
@ One operation at a time

@ All individual operations take same amount of
time




What is the Runtime of
Linear Search

@ In terms of the size of the input
@ Best case?

@ Worst case?

@ Average case?

@ Which case should we care about most?




Big-Oh Notation




Approximation

@ Analysis of algorithms is concerned with
predicting the approximate runtime cost

@ We typically:

@ Just worry about significant differences
between algorithms

@ Just worry about very large inputs




Example

@ Suppose each execution of a fib method
takes 5e-? seconds, not counting recursive
Invocations

@ What's the execution time of fib(5)...
@ for the simple recursive version? =75e? sec
@ for the tail-recursive version? «~25¢-° sec

@ What about fib(50)?
~NNNNNNNe=? sec vs. 2250e° sec




“On the order”

@ Recursive fib takes “on the order” of fib(n)
steps

@ Tail-recursive fib takes “on the order” of n
steps




Big-Oh Notation

@ A formal notation for “on the order of”
@ Focuses on very large inputs

@ Is asymptotic - provides a bound on the
value for large numbers




Formally

g is a ceiling on f
@ We write f(n) = O(g(n)),

@ and say “f is big-oh of
g//

-

f‘-\

@ if there exists ’/< s

positive constants c / N\

and no such that \

@ 0 <f(n) <cg(n) "o fim)= N gin))

for all n > ng




Review for Exam 2




