
Basic Analysis of
Algorithms

Curt Clifton
Rose-Hulman Institute of Technology

Recursive Fibonacci

long fib(int n) {

 if (n <= 0) return 0;

 if (n == 1) return 1;

 return fib(n-1) +

 fib(n-2);
}

Why so slow?

Shlemiel the Painter: http://www.joelonsoftware.com/articles/fog0000000319.html

fib(1)fib(0)

fib(2)

fib(3)

fib(1)

fib(4)

fib(1)fib(0)

fib(2)

fib(5)

fib(1)fib(0)

fib(2)

fib(3)

fib(1)

Tail-recursive Fibonacci
long fib(int n) {

 return fibHelp(n, 1, 1,
0);
}

long fibHelp(int n, int m,
long fm, long fmm1) {

 if (n < m) return 0;

 if (n == m) return fm;

 return fibHelp(n, m+1,

 fm + fmm1, fm);
}

Why so much better?

long maxes out at fib(92) = 7,540,113,804,746,346,429

fib(5)

fibHelp(5, 1, 1, 0)

fibHelp(5, 2, 1, 1)

fibHelp(5, 3, 2, 1)

fibHelp(5, 4, 3, 2)

fibHelp(5, 5, 5, 3)

Can we improve on this?
static long fibLoop(int n) {

 if (n <= 0) return 0;

 if (n == 1) return 1;

 int m = 1; long fm = 1; long fmm1 = 0;

 while(m < n) {

 m++;

 long nextFM = fm + fmm1;

 fmm1 = fm;

 fm = nextFM;

 }

 return fm;
}

How much better?

Iteration vs. Recursion

Loops often harder to understand than
recursive implementations

Engineering tradeoff:

Maintainability vs. efficiency

“To iterate is human, to recurse divine.”
! ! ! ! ! ! ! ! ! ! ! — L. Peter Deutsch

Cartoon of the Day

Analysis of Algorithms

A technique for predicting the approximate
run-time performance of some code

Helps in deciding whether efficiency
improvement is worthwhile

Algorithm

A well-defined computational procedure that:

take some value(s) as input and

produces some value(s) as output

An algorithm is a tool for solving a
computational problem

Reminder of slides based on [Cormen, Leiserson, and Rivest, 1990]

The Fibonacci Problem

Input: a natural number n

Output: fib(n) where fib is defined by

fib(n) =






0 if n = 0

1 if n = 1

fib(n −1)+fib(n −2) otherwise

The Array Search
Problem

Input:

A sorted array of integers a[0], ..., a[n-1]

and an integer m

Output:

An index i such that a[i] == m

or -1 if no such i exists

Array Search Solution
int search(int[] a, int m)
{

 int n = a.length;

 for (int i=0; i < n; i++) {

 if (a[i] == m)

 return i;

 }

 return -1;
}

What things might
we want to predict
when analyzing this?

Let a = {2, 3, 5, 7}

Runtime for m = 2

Runtime for m = 5

Runtime for m = 11

Suppose a has 100
elements (n = 100)?

Approximating Runtime
– Some Assumptions

One processor

Unlimited memory

One operation at a time

All individual operations take same amount of
time

What is the Runtime of
Linear Search

In terms of the size of the input

Best case?

Worst case?

Average case?

Which case should we care about most?

Big-Oh Notation

Approximation

Analysis of algorithms is concerned with
predicting the approximate runtime cost

We typically:

Just worry about significant differences
between algorithms

Just worry about very large inputs

Example
Suppose each execution of a fib method
takes 5e-9 seconds, not counting recursive
invocations

What’s the execution time of fib(5)…

for the simple recursive version?

for the tail-recursive version?

What about fib(50)?

≈75e-9 sec

≈25e-9 sec

≈NNNNNNNe-9 sec vs. ≈250e-9 sec

“On the order”

Recursive fib takes “on the order” of fib(n)
steps

Tail-recursive fib takes “on the order” of n
steps

Big-Oh Notation

A formal notation for “on the order of”

Focuses on very large inputs

Is asymptotic – provides a bound on the
value for large numbers

Formally

We write f(n) = O(g(n)),

and say “f is big-oh of
g”

if there exists
positive constants c
and n0 such that

0 ≤ f(n) ≤ cg(n)
for all n ≥ n0

g is a ceiling on f

Review for Exam 2

