
CSSE 220

Software Engineering Techniques
Design Principles

Encapsulation

Today’s Agenda

• Collect Quizzes and go over solutions

• Software Engineering Techniques:

– Pair programming

– Version Control (briefly!)

• Focus on more OO Design principles:

– Spread functionality throughout the system

– Encapsulation

Software Engineering Techniques

• Pair programming

– Upcoming assignment CrazyEights requires this!

• Version Control

– How to avoid merge conflicts in SVN

What Is Pair Programming?

• Two programmers work side-by-side at a computer, continuously
collaborating on the same design, algorithm, code, and/or test

• Enable the pair to produce higher quality code than that
produced by the sum of their individual efforts

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=2su5DL6nOdzlvM&tbnid=nY7kpcTF_FtAtM:&ved=0CAUQjRw&url=http://www.agile66.com/blogs/2010/02/23/sustainability/&ei=LkbKUs_AN-WuyQHZioHICw&bvm=bv.58187178,d.aWc&psig=AFQjCNF2cgViwv_A69WXzzBKqxYXmLTSng&ust=1389073990404033
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=2su5DL6nOdzlvM&tbnid=nY7kpcTF_FtAtM:&ved=0CAUQjRw&url=http://www.agile66.com/blogs/2010/02/23/sustainability/&ei=LkbKUs_AN-WuyQHZioHICw&bvm=bv.58187178,d.aWc&psig=AFQjCNF2cgViwv_A69WXzzBKqxYXmLTSng&ust=1389073990404033

• Working in pairs on a single computer
– The driver, uses the keyboard, talks/thinks out-loud

– The navigator, watches, thinks, comments, and
takes notes

– Person who really understands should start by
navigating 

• For hard (or new) problems, this technique
– Reduces number of errors

– Saves time in the long run

Pair Programming

Q1

Pair programming video

• https://www.youtube.com/watch?v=rG_U12u
qRhE

https://www.youtube.com/watch?v=rG_U12uqRhE

SOFTWARE VERSIONS

When Two+ People Edit the Same Code

Alice edits
sqrt method

Math.java

Bob edits
sqrt method

Alice commits
changes

Bob attempts to
commit changes

ERROR

Updated
Math.java

Source control system cannot
resolve multiple changes on the
same code, Bob should have
updated and resolved conflicts
before committing.

• Version control tracks multiple versions
– Enables old versions to be recovered
– Allows multiple versions to exist simultaneously

• Always:
– Update before working
– Update again before committing
– Commit often and with good messages

• Communicate with teammates so you don’t edit
the same code simultaneously
– Pair programming ameliorates this issue 

Team Version Control

Q2

Team Version Control

Check Out

EditUpdate

Commit Update

Update and
Commit often!

What if I get a conflict on update?

• If you did an update and now have File.java,
File.java.mine, File.java.rN, and File.java.rM
(where N and M are integers):

– YOU HAVE A CONFLICT!

• Eclipse provides tools for resolving conflicts

• Follow the steps in this link to resolve a conflict:

– http://www.rose-
hulman.edu/class/csse/csse221/current/Resources/Re
solvingSubversionConflicts.htm

http://www.rose-hulman.edu/class/csse/csse221/current/Resources/ResolvingSubversionConflicts.htm

Moving on….

• More Object-Oriented Principles for Design

• Learn about next set of principles

– What are they?

– Why are they useful?

– When are the most important?

– How can we apply them?

Major Goals of ALL Program Design

• Say someone has written a program that
works and it has no bugs, but it is poorly
designed.

– What does that mean?

– Why do we care?

• I think there are two things that would be nice

Principles of Design (for CSSE220)
1. Structure your program around the data that needs storing

a) Nouns become your classes, operations become their methods
2. Your structure needs to function correctly

a) Every class must have access (directly or indirectly) to the data it
needs to complete its operations

b) Usually this means the problem must be modeled correctly
c) Data should also not be duplicated

3. Functionality should be spread throughout the system

a) No single part of the system should get too large
b) Each class should have a single responsibility it accomplishes

4. Minimize dependencies between objects when you can

a) Ask don't tell
b) Don't have message chains

5. Don't duplicate code

a) Similar "chunks" of code should be unified into functions
b) Classes with similar features should be given common interfaces
c) Classes with similar internals should be simplified using inheritance

What are the principles?

3. Functionality should be spread throughout the system

a) No single part of the system should get too large

b) Each class should have a single responsibility it
accomplishes

Why do we want to spread things out?

Why is it good to have a single responsibility?

Why do we even have classes?

What if there were no String class?

• Instead, what if we just passed around arrays
of characters - char[]

• And every String function that exists now,
would instead be a function that operated on
arrays of characters

• E.g. char[] stringSubstring(char[] input, int
start, int end)

• Would things be any different? Discuss this
with the person next to you.

Concatenate…
String stringName1 = "jason";
String stringName2 = "yoder";
String stringConcat = stringName1.concat(stringName2);
System.out.println(stringConcat);
--
char[] charName1 = {'j','a','s','o','n'};
char[] charName2 = {'y','o','d','e','r'};
char[] charConcat =

new char[charName1.length + charName2.length];

for (int i=0; i< charName1.length; i++) {
charConcat[i] = charName1[i];

}
for (int i=0; i< charName2.length; i++) {

charConcat[charName1.length + i] = charName2[i];
}
System.out.println(Arrays.toString(charConcat));

Class sizes

• Why not put all the Math utilities in the String
class?

– We could just get anything we need done with
one library!

• Let’s look at a slightly expanded UML of a
portion of the String class for further
consideration

Adding Types to The Diagram

• Shows the:
– Attributes

(data, called fields
in Java) and

– Operations
(functions, called
methods in Java)

of the objects of a class

• Does not show the
implementation

• Is not necessarily
complete

String

data: char[]

contains(s:String) : boolean

endsWith(suffix:String) : boolean

indexOf(s:String) : int

length() : int

replace(target:String,
replace:String) : String

substring(begin:int,
end:int) : String

toLowerCase() : String

Fields

Methods

Pizza Restaurant Scenario

A pizza restaurant needs to calculate the costs of
orders and record what pizzas need to be made. An
order consists of a number of pizzas which might
have toppings as well as a customer’s name and an
order date. Each pizza costs $8 with no
toppings. The first 2 toppings cost $2
apiece. Additional toppings beyond that cost $1. If
a pizza has just peppers, onions, and sausage -
that's "The special" and it costs $13.

Design a UML diagram with types to model this.

UML

1. What classes did you have?

2. Where did you put “costOfPizza()”?

Solution A

Solution B

Which is better?

Solution A

Solution B

Conceptually, calculating costs could belong in either
order or pizza. But order is doing a lot of stuff – Pizza is
just a dumb data holder. So by spreading the functionality
into the pizza, we improve the design.

Alternate Pizza Restaurant

Consider now the ability to add a discount to an
order, such that a coupon can be added to an order
and then it changes how the cost is calculated. A
coupon may offer a discount percentage for
toppings (50% off all toppings) and/or percentage
off of entire orders. In addition, there should be a
way to calculate how long it takes to create a pizza
based on its size and toppings.

Design a UML diagram with types to model this.

UML

1. What classes did you have?

2. Where did you put “getCost()”?

One Solution

3. Functionality should be spread throughout the system

a) No single part of the system should get too large

b) Each class should have a single responsibility it
accomplishes

http://www.plantuml.com/plantuml/img/LP31YW8n38RlVOhWIHTy0H4HPe-YmWfxhjCm1jjcQDB3phBllfsfEdXfoV__-KAo5xL9S_16xXHxcsm0qH-FvKtKJevflHM1Cms3XLy3eDpt53lPm854jryb6RiT54TeGDW0HHrZ5F32JKAhk5mzvBydxfGSfWdNPb4Ec8usZCqLLtHN-ahzMRvITQWDYquWn_dgSMOrd7kE8ykHj9oZVj_OOntnYi_kvR706yhK-7e7Yuz5tNQMwWHZzXZTU9D_
http://www.plantuml.com/plantuml/img/LP31YW8n38RlVOhWIHTy0H4HPe-YmWfxhjCm1jjcQDB3phBllfsfEdXfoV__-KAo5xL9S_16xXHxcsm0qH-FvKtKJevflHM1Cms3XLy3eDpt53lPm854jryb6RiT54TeGDW0HHrZ5F32JKAhk5mzvBydxfGSfWdNPb4Ec8usZCqLLtHN-ahzMRvITQWDYquWn_dgSMOrd7kE8ykHj9oZVj_OOntnYi_kvR706yhK-7e7Yuz5tNQMwWHZzXZTU9D_

Do we need Coupon or Topping?

• It depends, do the classes do anything with
their data, or are the just data classes that
simply all you to get and set values?

http://www.plantuml.com/plantuml/img/JK_B2i903BplLuIULF07YfH2FOeA5ZolRQZ1VPHDzc35VtVx47f9o4ncc2bPT91eZU8NkLu7RO7bRJ3DGCt4gCPePhZIC6ZuA03nVK-kunnEn7AufK_N5P0OfW4X1t8olf75sbS1jU1cky3Vlzqbj1WckoQoU8lXhEqedkqItYPTkezfZHTnuwEJ-zCRdCKvj3u-p9gjbsXhhaEfFCiKOG5JYjbYNq2so-PkIfNesh7n3m00
http://www.plantuml.com/plantuml/img/JK_B2i903BplLuIULF07YfH2FOeA5ZolRQZ1VPHDzc35VtVx47f9o4ncc2bPT91eZU8NkLu7RO7bRJ3DGCt4gCPePhZIC6ZuA03nVK-kunnEn7AufK_N5P0OfW4X1t8olf75sbS1jU1cky3Vlzqbj1WckoQoU8lXhEqedkqItYPTkezfZHTnuwEJ-zCRdCKvj3u-p9gjbsXhhaEfFCiKOG5JYjbYNq2so-PkIfNesh7n3m00

Rule of Thumb - Avoid Data Classes!

• A data class is a class that just contains getters
and setters

• Often, we think of Data Classes as violating a
principle of OOD called encapsulation
because they aren’t in control of their own
data – they are just dumb repositories for
other classes to use

• Usually you can improve a data class by
finding functionality to add to them

A particular program is designed to load constellations from
datafiles and draw them on the screen. The datafiles includes
include details about star location size and color as well as
which stars ought to be connected to draw the
constellation. Depending on the star data, each star should be
drawn differently (e.g. right size, right color).

Explain the problem with the given solution and then propose
a UML solution of your own.

http://www.plantuml.com/plantuml/img/PP1D2i8m48NtFSNWoagzWY0MLrM4dc18enqwJKec8bMykqbjfSLDXlbxtvj8GwP3Xos8xrc7rv7ozvQJH36AGDdq9oG3hwH6Kx4kB5OvUhmIwxMoHhncHa_MdB7L6LHZBsRfk9EJT8pzdlamNv3rpM5Nav8qUK-ynKIW0fYW50AJqHAYU7GNApGeZFd1idLJKj9pc0z6Zz5aT6C6Dm2LmyU2CBFmxHOHyrSjW-wlc44tyZDGaPo11EPmnFHTsnsiDglbDHy0
http://www.plantuml.com/plantuml/img/PP1D2i8m48NtFSNWoagzWY0MLrM4dc18enqwJKec8bMykqbjfSLDXlbxtvj8GwP3Xos8xrc7rv7ozvQJH36AGDdq9oG3hwH6Kx4kB5OvUhmIwxMoHhncHa_MdB7L6LHZBsRfk9EJT8pzdlamNv3rpM5Nav8qUK-ynKIW0fYW50AJqHAYU7GNApGeZFd1idLJKj9pc0z6Zz5aT6C6Dm2LmyU2CBFmxHOHyrSjW-wlc44tyZDGaPo11EPmnFHTsnsiDglbDHy0

3a. Constellation does everything (except maybe the parsing
done by main).

http://www.plantuml.com/plantuml/img/PP1D2i8m48NtFSNWoagzWY0MLrM4dc18enqwJKec8bMykqbjfSLDXlbxtvj8GwP3Xos8xrc7rv7ozvQJH36AGDdq9oG3hwH6Kx4kB5OvUhmIwxMoHhncHa_MdB7L6LHZBsRfk9EJT8pzdlamNv3rpM5Nav8qUK-ynKIW0fYW50AJqHAYU7GNApGeZFd1idLJKj9pc0z6Zz5aT6C6Dm2LmyU2CBFmxHOHyrSjW-wlc44tyZDGaPo11EPmnFHTsnsiDglbDHy0
http://www.plantuml.com/plantuml/img/PP1D2i8m48NtFSNWoagzWY0MLrM4dc18enqwJKec8bMykqbjfSLDXlbxtvj8GwP3Xos8xrc7rv7ozvQJH36AGDdq9oG3hwH6Kx4kB5OvUhmIwxMoHhncHa_MdB7L6LHZBsRfk9EJT8pzdlamNv3rpM5Nav8qUK-ynKIW0fYW50AJqHAYU7GNApGeZFd1idLJKj9pc0z6Zz5aT6C6Dm2LmyU2CBFmxHOHyrSjW-wlc44tyZDGaPo11EPmnFHTsnsiDglbDHy0

My solution

Oftentimes you need to
find and extract a new
class when things get
complex.

http://www.plantuml.com/plantuml/img/LP113i8W44Ntd6BIbJNs2YR6nbLrqnDCAEgaKsWOZAd6kmjQOzammCp_xuFqP4VqE824YKrSFUbm6rWfpIW2RJyTaImyrHLjnwPnsDKOy4niLjfP2OOP0pbxmi5ie9jxwLJEcffaP9nspFkbG5ONZ-ELj9JgzUDb4v4AOADJB4pMIAp0CS4XqHF6VZ00dSTx9bruVxjDqcUtVsWRq7zOenDAwhZLZfsFLUXXPeiqbcV-_KwrXM9TvE5L_fHgdaacRm00
http://www.plantuml.com/plantuml/img/LP113i8W44Ntd6BIbJNs2YR6nbLrqnDCAEgaKsWOZAd6kmjQOzammCp_xuFqP4VqE824YKrSFUbm6rWfpIW2RJyTaImyrHLjnwPnsDKOy4niLjfP2OOP0pbxmi5ie9jxwLJEcffaP9nspFkbG5ONZ-ELj9JgzUDb4v4AOADJB4pMIAp0CS4XqHF6VZ00dSTx9bruVxjDqcUtVsWRq7zOenDAwhZLZfsFLUXXPeiqbcV-_KwrXM9TvE5L_fHgdaacRm00

Encapsulation

• Makes your program easier to understand by

– Grouping related stuff together

• Rather than passing around data, pass around
objects that:

– Provide a powerful set of operations on the data

– Protect the data from being used incorrectly

Q3

Encapsulation

• Makes your program easier to understand by…

– Saving you from having to think about how
complicated things might be

Using put and get in HashMap

Implementing HashMap

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=i4WVqDixXRt6hM&tbnid=zUYpDqTbbC0tvM:&ved=0CAUQjRw&url=http://blackbeltbartending.com/?p=31&ei=3VK3UuXUBYTfsAS2uoKwAg&bvm=bv.58187178,d.eW0&psig=AFQjCNHxM327zEzthDBxAv0ucKsLkfnX_g&ust=1387832401396704
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=i4WVqDixXRt6hM&tbnid=zUYpDqTbbC0tvM:&ved=0CAUQjRw&url=http://blackbeltbartending.com/?p=31&ei=3VK3UuXUBYTfsAS2uoKwAg&bvm=bv.58187178,d.eW0&psig=AFQjCNHxM327zEzthDBxAv0ucKsLkfnX_g&ust=1387832401396704
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=i4WVqDixXRt6hM&tbnid=zUYpDqTbbC0tvM:&ved=0CAUQjRw&url=http://blackbeltbartending.com/?p=31&ei=3VK3UuXUBYTfsAS2uoKwAg&bvm=bv.58187178,d.eW0&psig=AFQjCNHxM327zEzthDBxAv0ucKsLkfnX_g&ust=1387832401396704
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=i4WVqDixXRt6hM&tbnid=zUYpDqTbbC0tvM:&ved=0CAUQjRw&url=http://blackbeltbartending.com/?p=31&ei=3VK3UuXUBYTfsAS2uoKwAg&bvm=bv.58187178,d.eW0&psig=AFQjCNHxM327zEzthDBxAv0ucKsLkfnX_g&ust=1387832401396704

Encapsulation

Makes your program easier to change by…

• Allowing you to change how your data is
represented

Q4

A simple example of encapsulation

In your TeamGradebook classes, you need to
calculate a student’s average grade. This could be
accomplished by:
1) Adding a getAverage() method to the Student

class which calculates the average
2) Adding a getGrades() method to the student

class, which the TeamGradebook class could call,
and then use to compute the average

Which of these is most encapsulated?

Diagrams look similar!

http://www.plantuml.com/plantuml/img/bP5D3e8m48NtFSN4bHYzW3444XCswaOlCD094cWnRJ4nXBlR5X3Ypy9DqybxtyphDD86bMb4nNHPo1ig5A3Deo9xgYBp2iigr1ekX29Ho2cjw_A8XMpP5IMlAERyR1fEqYpF5fAvPNrvGa71P78DHeUnToUl8LOA7uT2crqlXI18fAISgcUq7_s9yxf9RThSgQCx8HFVIM5Etm9j1uO1wuQd3V5R1W038QtLbLEylQV2VfHsMZxD2U3LjfilxA-M7VlOCMn2MAmMOyBV1YTuzPs8I7BtYqy0
http://www.plantuml.com/plantuml/img/bP5D3e8m48NtFSN4bHYzW3444XCswaOlCD094cWnRJ4nXBlR5X3Ypy9DqybxtyphDD86bMb4nNHPo1ig5A3Deo9xgYBp2iigr1ekX29Ho2cjw_A8XMpP5IMlAERyR1fEqYpF5fAvPNrvGa71P78DHeUnToUl8LOA7uT2crqlXI18fAISgcUq7_s9yxf9RThSgQCx8HFVIM5Etm9j1uO1wuQd3V5R1W038QtLbLEylQV2VfHsMZxD2U3LjfilxA-M7VlOCMn2MAmMOyBV1YTuzPs8I7BtYqy0
http://www.plantuml.com/plantuml/img/bP712i8m38RlVOhWIKLVG6Gu4Boe5ts1p8OvN3jfCa76tjssRYXE3rvAm_V_oTzqnO9EQbCglXJsYWuDiDnBygShJf6eKudCS2Gq6uUQiggwxB2mZJgZrIMbMX-arcHbVF0cctjlBFTeQF8IXGQzGlmzu1capk5zMx0idoW1GoOZ5oY_kUFeeLrNTURJve7swWr9UYE7ENqBjEWy2bJRFQsBtoW0w1pMIqFvYhUEhkGvYWFBIM8g7azWCLJwzc-h-wjvgmRRXda2e-cep_fR442aduuLMHt-ym40
http://www.plantuml.com/plantuml/img/bP712i8m38RlVOhWIKLVG6Gu4Boe5ts1p8OvN3jfCa76tjssRYXE3rvAm_V_oTzqnO9EQbCglXJsYWuDiDnBygShJf6eKudCS2Gq6uUQiggwxB2mZJgZrIMbMX-arcHbVF0cctjlBFTeQF8IXGQzGlmzu1capk5zMx0idoW1GoOZ5oY_kUFeeLrNTURJve7swWr9UYE7ENqBjEWy2bJRFQsBtoW0w1pMIqFvYhUEhkGvYWFBIM8g7azWCLJwzc-h-wjvgmRRXda2e-cep_fR442aduuLMHt-ym40

Diagrams look similar!

How would the actual code
compare when performing the
stated task “calculate a student’s
average grade”?

getGrades()

public class TeamGradebook {

…

private String handleGetAverage(String studentName) {

Student student = getStudentByName(studentName);

if (student == null) {

return "student " + student + " not found";

}

double average = 0;

for (double d: student.getGrades()) {

average += d;

}

return Long.toString(Math.round(average));

}

…

}
Calculation happening in TeamGradebook!

getAverage()

public class TeamGradebook {

…

private String handleGetAverage(String studentName) {

Student student = getStudentByName(studentName);

if (student == null) {

return "student " + student + " not found";

}

return Long.toString(Math.round(student.getAverage()));

}

…

}

Calculation happening in Student!

Why does this improve the design?

• It makes the Student object more featureful,
and puts the code in an expected place

• Reduces the code in TeamGradebook which is
already quite long

• Allows you to change how the grades are
represented in TeamGradebook, should you
wish to (i.e. drop lowest score)

Your turn!

• Try to design UML for the following scenario

Rental Company
• A rental company has many vehicles that it rents. Vehicle

have a year, make, and model and a stock photo
advertising the vehicle on file. There are multiple vehicles
that are the same year, make, model.

• However, additional information on the specific physical
vehicles is also required. For instance, each physical
vehicle has a vin (vehicle identification number unique to
each), a description of any damage to it, and the driver’s
license numbers of everyone who has rented it.

• The company also needs to be able to print out the
damage report of a vehicle given a VIN. The company
also has to be able to print out an advertisement using
the stock photo for a given year, make, and model.

Operable but poor solution

• What is wrong?

http://www.plantuml.com/plantuml/img/ZP7FIWD13CRl-nIXfrRi2mnbgU15w8geU8-pOJli_5cIj534TpVRkjfY3ruo9FbzcIypQr5atQLOIH_oW8m9H0-HB7BmnuwFA09lj0q-qZDbnTXWoF1H0Hm8kS6Ucj9IV2tVK8E30mkh5nkIkzj9N9jY7_A_kC4gUey9ExjpAAppKUhWX2ucugxT4siGIcPiVc7db_sytE77EJYm4POaqy34Z_ceFo-85jy_ROiM1yVZjCavmcQ0U1CyPQ77NNed5WUR8Bfwi4v7N5ytlRYwxUYw-lleiAnXTZERLgdMbDlnaxu0
http://www.plantuml.com/plantuml/img/ZP7FIWD13CRl-nIXfrRi2mnbgU15w8geU8-pOJli_5cIj534TpVRkjfY3ruo9FbzcIypQr5atQLOIH_oW8m9H0-HB7BmnuwFA09lj0q-qZDbnTXWoF1H0Hm8kS6Ucj9IV2tVK8E30mkh5nkIkzj9N9jY7_A_kC4gUey9ExjpAAppKUhWX2ucugxT4siGIcPiVc7db_sytE77EJYm4POaqy34Z_ceFo-85jy_ROiM1yVZjCavmcQ0U1CyPQ77NNed5WUR8Bfwi4v7N5ytlRYwxUYw-lleiAnXTZERLgdMbDlnaxu0

Better Solution

• There are two different things:
– Actual physical vehicle

– Records of specific vehicles

• Class has own behaviors (reports)
– Used for specific purposes, specific data

http://www.plantuml.com/plantuml/img/VLBDQiCm3BxdAKHFtLXV89JImIw3PfHrxAuv8Z7nJx3SGYXxzybfGufRTh6nlXz_ahtbY24UhIcuqwx7W1Ou3ePa3LgDY3B83D_KQcNearn4Kw5sS2u0JbDL-L1Ns9SWo_eWMjUyp9g4RX9Tkoz_hTwnz-t0Mg6vuedV2nBVq68Z9hqFSPaiIhX8dYR6QtsY43MJbNJBWJ1Ks57bQp8pzpTl98KQcqW2A46Cv6152PCgdPFBRO6ZLzs-zT6NC6wFKymNPdrTvYRpk_4Ceg2mqueSqyVH_b3W4dQQu_fTa8R2uscaI-uV1bORM3mliax_8MO9Yponq3AlBRaw_Oq_
http://www.plantuml.com/plantuml/img/VLBDQiCm3BxdAKHFtLXV89JImIw3PfHrxAuv8Z7nJx3SGYXxzybfGufRTh6nlXz_ahtbY24UhIcuqwx7W1Ou3ePa3LgDY3B83D_KQcNearn4Kw5sS2u0JbDL-L1Ns9SWo_eWMjUyp9g4RX9Tkoz_hTwnz-t0Mg6vuedV2nBVq68Z9hqFSPaiIhX8dYR6QtsY43MJbNJBWJ1Ks57bQp8pzpTl98KQcqW2A46Cv6152PCgdPFBRO6ZLzs-zT6NC6wFKymNPdrTvYRpk_4Ceg2mqueSqyVH_b3W4dQQu_fTa8R2uscaI-uV1bORM3mliax_8MO9Yponq3AlBRaw_Oq_

Design Principles

3. Functionality should be spread throughout the system

a) No single part of the system should get too large

b) Each class should have a single responsibility it
accomplishes

http://www.plantuml.com/plantuml/img/VLBDQiCm3BxdAKHFtLXV89JImIw3PfHrxAuv8Z7nJx3SGYXxzybfGufRTh6nlXz_ahtbY24UhIcuqwx7W1Ou3ePa3LgDY3B83D_KQcNearn4Kw5sS2u0JbDL-L1Ns9SWo_eWMjUyp9g4RX9Tkoz_hTwnz-t0Mg6vuedV2nBVq68Z9hqFSPaiIhX8dYR6QtsY43MJbNJBWJ1Ks57bQp8pzpTl98KQcqW2A46Cv6152PCgdPFBRO6ZLzs-zT6NC6wFKymNPdrTvYRpk_4Ceg2mqueSqyVH_b3W4dQQu_fTa8R2uscaI-uV1bORM3mliax_8MO9Yponq3AlBRaw_Oq_
http://www.plantuml.com/plantuml/img/VLBDQiCm3BxdAKHFtLXV89JImIw3PfHrxAuv8Z7nJx3SGYXxzybfGufRTh6nlXz_ahtbY24UhIcuqwx7W1Ou3ePa3LgDY3B83D_KQcNearn4Kw5sS2u0JbDL-L1Ns9SWo_eWMjUyp9g4RX9Tkoz_hTwnz-t0Mg6vuedV2nBVq68Z9hqFSPaiIhX8dYR6QtsY43MJbNJBWJ1Ks57bQp8pzpTl98KQcqW2A46Cv6152PCgdPFBRO6ZLzs-zT6NC6wFKymNPdrTvYRpk_4Ceg2mqueSqyVH_b3W4dQQu_fTa8R2uscaI-uV1bORM3mliax_8MO9Yponq3AlBRaw_Oq_

• Instructions are online

• This is to be done with a partner

– These are assigned by the instructor

• If you have questions about the
requirements, ask early!

Crazy Eights

• Go to SVN repository view at bottom of workbench
– Window show view Other SVN SVN Repositories

• Right click in SVN View, then choose New SVN
Repository Location
– http://svn.csse.rose-hulman.edu/repos/csse220-201810-

crazy-eightsxx

– Your team repository will be csse220-201810-crazy-eights-
XX where XX is the team number

– On Moodle, click on “Crazy Eights Team Assignments” to
see to what team you have been assigned

Checkout CrazyEights Project

http://svn.csse.rose-hulman.edu/repos/csse220-201810-crazy-eightsxx

UML for Crazy Eights Dealing

• Read the specification section for Crazy Eights
called “Rules of the Game”
– Don’t worry about the full requirements section right

now

• With your partner, create a UML diagram that
covers the initial dealing of player hands
– Be sure you include main and enough information for

each class to do its work

• When done, call me over to take a look

• Then we’ll discuss solutions

• Work with your partner on the CrazyEights
project

– Get help as needed

– Follow the practices of pair programming!

• Don’t do any of the work without your
partner!

Work Time

Q5-6

