
Object & Polymorphism

Check out Polymorphism from SVN

Inheritance, Associations, and
Dependencies

Solid line, open arrowhead = “has-a”

Field association lines
are solid

Dependency lines are dashed

Use association lines only when an item
is stored as a field.

Two types of open arrowheads

} Generalization (superclass)

} Specialization (subclass)

Closed arrowhead = “is-a”.
Two types: solid line= inherits, dotted line = implements

The superest class in Java

Every class in Java inherits from Object

} Directly and explicitly:
◦ public class String extends Object {…}

} Directly and implicitly:
◦ class BankAccount {…}

} Indirectly:
◦ class SavingsAccount extends BankAccount {…}

Q1

} String toString()

} boolean equals(Object otherObject)

} Class getClass()

} Object clone()

} …

Often overridden

Sometimes useful

Often dangerous!

Q2

} Return a concise, human-readable summary
of the object state

} Very useful because it’s called automatically:
◦ During string concatenation
◦ For printing
◦ In the debugger

} getClass().getName() OR
getClass().getSimpleName() comes in
handy here…

Q3

} equals(Object foo) – should return true
when comparing two objects of same type
with same “meaning”

} How?
◦ Must check types—use instanceof OR
getClass().isAssignableFrom(foo.getClass())
◦ Must compare state—use cast

Q4

Recall casting a variable: Taking an
Object of one particular type and

“turning it into” another Object type

Review and Practice

} A subclass instance is a superclass instance
◦ Polymorphism still works!
BankAccount ba = new SavingsAccount();
ba.deposit(100);

} But not the other way around!
SavingsAccount sa = new BankAccount();
sa.addInterest();

} Why not?
BOOM!

} Can use:
public void transfer(double amount, BankAccount o)
{

this.withdraw(amount);
o.deposit(amount);

}
in BankAccount

} To transfer between different accounts:
SavingsAccount sa = …;

CheckingAccount ca = …;

sa.transfer(100, ca);

} If B extends or implements A, we can write
A x = new B();

Declared type tells which
methods x can access.
Compile-time error if try to
use method not in A.

The actual type tells which
class’ version of the
method to use.

} Can cast to recover methods from B:
((B)x).foo()

Now we can access all of
B’s methods too.

If x isn’t an instance of B,
it gives a run-time error
(class cast exception)

} Step 1: Identify the Declared/Casted Type
◦ This is the item to the left of the variable name

when the variable was declared:
� BankAccount sa = new SavingsAccount();

◦ Declared Type may be changed due to a cast:
◦ ((SavingsAccount)sa).addInterest();

◦ If there is a casted type, record that, otherwise use
the declared type.

Declared Type

Casted Type

} Step 2: Identify the Instantiation/Actual Type
◦ This is the type on the right hand side of the equal

sign the last time the variable was assigned to:
� BankAccount sa = new SavingsAccount();

◦ Record the instantiation type

Instantiation Type

} Step 3: Check for Compilation Errors
Calling a method that is not available based on the
declared or casted type of the object

BankAccount sa = new SavingsAccount();
sa.addInterest();
Compiler Error: BankAccount does not have addInterest

Incompatible type assignment
SavingsAccount x = new BankAccount();
Compiler Error: BankAccounts can not be stored in
SavingAccount typed variables

Invalid cast: casting to a type that isn’t in the tree below
the declaration type.

BankAccount sa = new SavingsAccount();
((SafetyDepositBox)sa).depositItem();
SafetyDepositBox is not below BankAccount.

Cannot instantiate interfaces or abstract classes!

} Step 4: Check for Runtime Errors
Runtime errors are caused by invalid casting.
An item may only be cast to a type IF:
� The instantiation type matches the casted type
� The casted type is between the declaration type and

the instantiation type

BankAccount sa = new SavingsAccount();
((CheckingAccount)sa).deductFees();
Runtime Error: SavingsAccount is not a CheckingAccount

Account a = new CheckingAccount();
((BankAccount)a).deposit();
This is valid because a CheckingAccount is a BankAccount

} Step 5: Find Method to Run

◦ Find the instantiation type in the hierarchy.
1. If that type implements the given method, then use

that implementation.
2. Otherwise, move up to the parent type and see if

there’s an implementation there.
a. If there is an implementation, use that.
b. Otherwise, repeat step 2 until an implementation is

found.

} Do questions 5 through 7
from Quiz.

} Please hand them in
when done and then start
reading the BallWorlds
specification on your
schedule page.

Q5-7, hand in when done, then start reading BallWorlds spec

• Project Introduction
• Meet your partner (see link in

part 3 of spec)
• Carefully read the

requirements and provided
code

• Ask questions (instructor and
TAs).

Check out BallWorlds from SVN

Look over the BallWorlds UML Class Diagram and start
Questions.

Pulsar, Mover, etc.

