
CSSE 220

More interfaces
More recursion

More fun?

Check out RecursiveHelperFunctions and BettingInterfaces from SVN

Exercise time

• Solve the sumArray function recursively

– It’s in the RecursiveHelperFunctions project

• You can work with friends, but each of you
should get the code working on your own
computer

Recursive Helper Functions – What,
When, Why, How?

• What:
– A recursive function that is called by another (non-

recursive) function

– The non-recursive function (the caller) doesn’t do
much

• When:
– Additional parameters are needed

• Often the initial function you’re given is not in the ideal form
for a recursive solution

– Return values need to be updated

Recursive Helper Functions – What,
When, Why, How?

• Why:

– Makes function called by external code cleaner/easier
to use

• Does not rely on caller to understand how to initialize the
information for the helper

– Easier to understand by breaking problem down to
smaller pieces

• How:

– Methods named coolFunction & coolFunctionHelper

• 90% of the code is in coolFunctionHelper

RecursiveHelperFunctions

• Solve the remaining problems

– all the problems will require you to create a
recursive helper function

• You can work with a friend but make sure both
of you write the code

• Save every solution we find to sub-problems

• Before recursively computing a solution:
– Look it up

– If found, use it

– Otherwise do the recursive computation

• Study the memoization code in the
RecursiveHelperFunctions project

Memoization

What if the recursive call isn’t in the
return?

• Let’s start the quiz problem together, then you
can finish it on your own.

BettingInterfaces

• Get in groups of 2-3…no one working alone

• Understand the given code, the duplication, plus
the additional features you will be adding. Look
at 3 TODOs in BettingMain.

• Design a solution for all 3 TODOs using interfaces
and make a UML diagram describing it

• Get myself or a TA to check out your UML

• Once we sign off – start coding
– You only need 1 computer for this one.

– I recommend you do each TODO one by one rather
than doing everything in one go

Hints

1) Your interface will likely be called Discount

2) You should have 2 classes implementing
Discount, one for each of the current types of
Discounts in the code

3) You’ll need to add an ArrayList<Discount> (or
some other storage method to main)

