CSSE 220

Interfaces and Polymorphism

Check out Interfaces from SVN

Interfaces — What, When, Why, How?

e What:

— Code Structure used to express operations that
multiple class have in common

— No method implementations
— No fields

e When:

— When abstracting an idea that has multiple,
different implementations

Interfaces — What, When, Why, How?

 Why:
— Provide method signatures and documentation
— Create a contract that someone must follow

* Client Code Reuse, for example, Java Event Handlers
* How:
public interface InterfaceName {

//method definitions
//We'll look more closely at the syntax in a later slide

Interface Types: Key Idea

* |nterface types are like contracts

* Aclass can promise to an interface
— MUST implement every method

— Client code knows that the class will have those methods
* Compiler verifies this

— Any client code designed to use the interface type can
automatically use the class!

* |nterfaces help to reduce coupling by tying your design
to the interface and not the class implementation.

— A new interface implementation can be switched out for

the original without changing the rest of the code

Interface Types can be used anywhere
that a class type is used.

* Once an interface is defined, it can be used as a type.

* Say we have an interface named Pet, and Dog and Cat
implement this interface...

1. Variable Declaration:

* Pet d = new Dog();
* Pet c = new Cat();

2. Parameters:

* public static void feedPet(Pet p) {...}

e Can call with any object of type Pet:
— feedPet(new Dog());
— feedPet(new Cat());

Interface Types can be used anywhere
that a class type is used.

(...continued from last slide)

3. Fields:
* private Pet pet;
4. Generic Type Parameters:
* Arraylist<Pet> pets = new ArrayList<Pet>();

* pets.add(new Dog());
* pets.add(new Cat());

Notation: In UML

«interface»
InterfaceName

&
I
I

Interimpl

« Closed triangle with a dashed line in
UML is an “is-a” relationship

 Read this as:

Interlmpl is-an InterfaceName

Why is this OK?

Dog

Cat

* Any child type may be stored into a variable of a
parent type, but not the other way around.

— A Dog is a Pet, and a Cat is a Pet, but a Pet is not
required to be a Dog or a Cat.

— And how could you construct a Pet?

* But how does Java know which method
implementation to use?

Polymorphism! (A quick intro)

Origin:
— Poly 2 many
— Morphism = shape

Classes implementing an interface give many differently
“shaped” objects for the interface type

Java knows what method implementation to use thanks to:

* choosing the right method based on the actual type of the implicit
parameter (variable before the dot) at run time

— For the p.feed() example:

* Java decides at runtime which implementation to use based on the
type of the object instance.

* The Dog’s feed method may specify dog food, and the Cat’s may
specify cat food.

Notation: In Code

public interface InterfaceName{
/** \/
* pregular javadocs
*/
void methodName(int x, int y);

‘//** [No method

Pl HINT * regular javadocs here LRI
don’t specify it * / semi-colon

interface, not class

Automatically

int doSomething(Graphics2D g);
}

public class InterImpl implements InterfaceName {

Interimpl promises to implement all the methods declared N
in the InterfaceName interface

Refactoring to an Interface

e stringTransforms package
— Review the code in the stringTransforms package

— Attempt to refactor the given code using an
interface by thinking about what operation is
performed repeatedly

— There is a hint at the bottom if you’re not quite
sure where to start, but only use it if you need

How does all this help reuse?

Can pass an instance of a class where an interface type is expected
— But only if the class implements the interface

We could add new functions to a NumberSequence’s abilities
without changing the runner itself.

— Sort of like application “plug-ins”

We can use a new Transforminterface without changing the method
that uses the Transformlinterface instance

Use interface types for field, method parameter, and return types
whenever possible. Like Pet instead of Dog, and List for ArrayList.

— List<Pet> pets= new ArrayList<Pet>();

