
CSSE	220

Interfaces	and	Polymorphism

Check	out	Interfaces	from	SVN

Interfaces	– What,	When,	Why,	How?

• What:
– Code	Structure	used	to	express	operations	that	
multiple	class	have	in	common

– No	method	implementations
– No	fields

• When:
– When	abstracting	an	idea	that	has	multiple,	
different	implementations

Interfaces	– What,	When,	Why,	How?

• Why:
– Provide	method	signatures	and	documentation
– Create	a	contract that	someone	must	follow

• Client	Code	Reuse,	for	example,	Java	Event	Handlers

• How:
public	interface	InterfaceName {

//method	definitions
//We’ll	look	more	closely	at	the	syntax	in	a	later	slide

}

Interface	Types:	Key	Idea
• Interface	types	are	like	contracts
• A	class	can	promise	to	implement an	interface

– MUST	implement	every	method

– Client	code	knows	that	the	class	will	have	those	methods
• Compiler	verifies	this

– Any	client	code	designed	to	use	the	interface	type	can	
automatically	use	the	class!

• Interfaces	help	to	reduce	coupling	by	tying	your	design	
to	the	interface	and	not	the	class	implementation.	
– A	new	interface	implementation	can	be	switched	out	for	
the	original	without	changing	the	rest	of	the	code Q1

Interface	Types	can	be	used	anywhere	
that	a	class	type	is	used.

• Once	an	interface	is	defined,	it	can	be	used	as	a	type.
• Say	we	have	an	interface	named	Pet,	and	Dog	and	Cat	
implement	this	interface…
1. Variable	Declaration:

• Pet	d	=	new	Dog();
• Pet	c	=	new	Cat();

2. Parameters:
• public	static	void	feedPet(Pet	p)	{…}
• Can	call	with	any	object	of	type	Pet:

– feedPet(new	Dog());
– feedPet(new	Cat());

Interface	Types	can	be	used	anywhere	
that	a	class	type	is	used.	

(…continued	from	last	slide)

3. Fields:
• private	Pet	pet;

4. Generic	Type	Parameters:
• ArrayList<Pet>	pets	=	new	ArrayList<Pet>();
• pets.add(new	Dog());
• pets.add(new	Cat());

Notation:	In	UML

• Closed triangle with a dashed line in
UML is an “is-a” relationship

• Read this as:

InterImpl is-an InterfaceName

Q2

Why	is	this	OK?
Pet p = new Dog();
p.feed();
p = new Cat();
p.feed();
p = new Pet(); // NO!
• Any	child	type	may	be	stored	into	a	variable	of	a	
parent	type,	but	not	the	other	way	around.
– A	Dog	is	a	Pet,	and	a	Cat	is	a	Pet,	but	a	Pet	is	not	
required to	be	a	Dog	or	a	Cat.

– And	how	could	you	construct	a	Pet?
• But	how	does	Java	know	which	method	
implementation	to	use?

Q3

Polymorphism!	(A	quick	intro)
• Origin:

– Poly	àmany
– Morphismà shape

• Classes	implementing	an	interface	give	many	differently	
“shaped”	objects	for	the	interface	type

• Java	knows	what	method	implementation	to	use	thanks	to:
– Late	Binding:	

• choosing	the	right	method	based	on	the	actual	type	of	the	implicit	
parameter	(variable	before	the	dot)	at	run	time

– For	the	p.feed()	example:
• Java	decides	at	runtime	which	implementation	to	use	based	on	the	
type	of	the	object	instance.

• The	Dog’s	feed	method	may	specify	dog	food,	and	the	Cat’s	may	
specify	cat	food.

Q4

Notation:	In	Code
public interface InterfaceName{

/**
* regular javadocs
*/

void methodName(int x, int y);

/**
* regular javadocs here
*/

int doSomething(Graphics2D g);
}

public class InterImpl implements InterfaceName {
…

}

interface,	not	class

No	method	
body,	just	a	
semi-colon

Automatically	
public,	so	we	
don’t	specify	it

InterImpl promises	to	implement	all	the	methods	declared	
in	the	InterfaceName interface

Refactoring	to	an	Interface

• stringTransforms package
– Review	the	code	in	the	stringTransforms package
– Attempt	to	refactor	the	given	code	using	an	
interface	by	thinking	about	what	operation	is	
performed	repeatedly

– There	is	a	hint	at	the	bottom	if	you’re	not	quite	
sure	where	to	start,	but	only	use	it	if	you	need

How	does	all	this	help	reuse?
• Can	pass	an	instance of	a	class	where	an	interface	type	is	expected

– But	only	if	the	class	implements the	interface

• We	could	add	new	functions	to	a	NumberSequence’s abilities	
without	changing	the	runner	itself.
– Sort	of	like	application	“plug-ins”

• We	can	use	a	new	TransformInterface without	changing	the	method	
that	uses	the	TransformInterface instance

• Use	interface	types	for	field,	method	parameter,	and	return	types	
whenever	possible.	Like	Pet	instead	of	Dog,	and	List	for	ArrayList.
– List<Pet>	pets=	new	ArrayList<Pet>();

