CSSE 220

Inheritance

Check out Inheritance from SVN



Sometimes a new class is
of the concept represented
by another

Can “borrow” from an existing
class, changing just what we need

The new class from the
existing one:

— all methods

— all instance fields




Examples

— adds interest earning, keeps other traits

— adds pay information and methods, keeps other
traits

— adds information about employees managed,
changes the pay mechanism, keeps other traits



Notation and Terminology

« class SavingsAccount BankAccount {
// added fields
// added methods

« Say “SavingsAccount BankAccount”
: BankAccount

: SavingsAccount




Inheritance in UML

/_ The “superest” class
in Java

Object

BankAccount

Solid line

shows T

inheritance
‘ SavingsAccount l a”

Still means “is




Interfaces vs. Inheritance

« class ClickHandler MouseListener
— ClickHandler to implement all the
methods of MouseListener
« class CheckingAccount BankAccount
— CheckingAccount (or overrides) all the

methods of BankAccount

For implementation code reuse




Inheritance Run Amok?

‘ JComponent \
‘ JPanel I ‘JTextComponent\ ‘ JLabel \ ‘AbstractButton I

‘ JTextField \ ‘ JTextArea \ ‘ JToggleButton I ‘ JButton \
‘ JCheckBox I ‘ JRadioButton \




With Methods, Subclasses can:

methods

methods
— Declare a new method to use

entirely new methods not in superclass




With Fields, Subclasses:

 ALWAYS inherit all fields unchanged

— Only have access to protected, public, and
package level fields

* Can add entirely new fields not in superclass

Z DANGER! Don’t use the

same name as a superclass
field!




Super Calls

e Calling superclass method:
— super.methodName(args) ;

e Calling superclass constructor:

— super(args) ;\

Must be the first line of
the subclass constructor




Polymorphism and Subclasses

* A subclass instance is a superclass instance
— Polymorphism still works!

* But not the other way around!
— CheckingAccount ca = new BankAccount();

ca.deductFees() ;\

* Why not?

BOOM!




Another Example

e Can use:

in BankAccount

 To transfer between different accounts:



Also look at the

Abstract Classes |40

shapes package,
especially

e Hybrid of superclasses and interfaces ShapesDemo
(during or after

— Like regular superclasses: class)

* Provide implementation of some methods

— Like interfaces
* Just provide signatures and docs of other methods
e Can’t be instantiated

 Example:

— public abstract class BankAccount {
/*%* documentation here */
public abstract void deductFees():

Elided methods as before




Access Modifiers

—any code can see it
— package and subclasses can see it
—anything in the package can see it
—only the class itself can see it

* Notes: ]
— default (i.e., no modifier)—only code
in the same can see it
* good choice for classes - Bad for

—like default, but fields!
subclasses also have access

* sometimes useful for helper methods




Look at shape hierarchy

All shapes have an upper left coordinate, plus width and
height

They all have an abstract method to compute their area and
perimeter

They all have a method printData that prints their height,
width, area, and perimeter

Review code for Shape, Rectangle, Circle

Things to do:
— Add tests for Rectangle and Circle

— Make CoolCircle a non-abstract subclass of Circle which overrides one
method to do something different and test it



Linear Lights Out

It's a solo project, but feel free to talk with others as you do it.

And to ask instructor/assistants for help

WORK TIME




