
CSSE	220

Coupling	and	Cohesion
Scoping

Please	checkout	VideoStore from	your	SVN

The	plan

• Learn	3	essential	object	oriented	design	
terms:
– Encapsulation		(done)
– Coupling
– Cohesion

• Scope	(if	we	have	time)

Coupling	and	Cohesion

• Two	terms	you	need	to	memorize
• Good	designs	have	high	cohesion	and	low	
coupling

Consider	the	opposite:
• Low	cohesion	means	that	you	have	a	small	
number	of	really	large	classes	that	do	too	
much	stuff

• High	coupling	means	you	have	many	classes	
that	depend	too	much	on	each	other

Imagine	I	want	to	make	a	Video	Game.		
Here	are	two	classes	in	my	design.		

Which	is	more	cohesive?
GameRunner

main(args:String)
loadLevel(levelName:String)
moveEnemies()
drawLevel(g:Graphics2D)
computeScore():int
computeEnemyDamage()
handlePlayerInput()
doPowerups(…)
runCutscene(cutsceneName:String)
//some	more	stuff

Image

loadImageFile(filename:String)
setPosition(x:int,y:int)
drawImage(g:Graphics2D)

*Note	that	in	both	these	classes	I’ve	omitted	the	fields	for	clarity

Cohesion

• A	class	should	represent	a	single	concept.		All	
interface	features	should	be	closely	related	to	
the	single	concept	that	the	class	represents.		
Such	a	class	is	said	to	be	cohesive.

- Your	textbook

On	to	coupling...

• When	one	class	requires	another	class	to	do	its	
job,	the	first	class	depends	on	the	second

• Shown	on	UML	
diagrams	as:
– dashed	line
– with	open	arrowhead

Dependency	Relationship

CSSE_Freshmen

add(students:	ArrayList<Student>)
…

Student

getFreshmen():	String

Coupling

//do setup must be called first
this.otherObject.doSetup(var1, var2, var3);

//now we compute the parameter
int var4 = computeForOtherObject(var1,var2);
this.otherObject.setAdditionalParameter(var4);

//finally we display
this.otherObject.doDisplay(this.var5, this.var6);

• Coupling	is	when	one	object	depends	strongly	on	another

Note	that	in	this	design,	GameRunner probably	had	
many	objects	of	the	image	class,	but	Image	does	not	
know	the	GameRunner class	even	exists.		That’s	a	sign	
of	low	coupling	between	Image	and	GameRunner.

GameRunner

main(args:String)
loadLevel(levelName:String)
moveEnemies()
drawLevel(g:Graphics2D)
computeScore():int
computeEnemyDamage()
handlePlayerInput()
doPowerups(…)
runCutscene(cutsceneName:String)
//some	more	stuff

Image

loadImageFile(filename:String)
setPosition(x:int,y:int)
drawImage(g:Graphics2D)

• Lot’s	of	dependencies	è high	coupling
• Few	dependencies	è low	coupling

Coupling

If	we	do	our	design	job	carefully

• We	will	break	our	larger	problem	into	several	
classes

• Each	of	these	classes	will	do	one	kind	of	thing	
(i.e.	they	will	have	high	cohesion)

• Our	classes	will	only	need	to	depend	on	each	
other	in	specific,	highly	limited	ways	(i.e.	they	
will	have	low	coupling).		Many	classes	won’t	
even	be	aware	of	most	of	the	other	classes	in	
the	system.

Imagine	that	you’re	writing	code	to	
manage	a	school’s	students

Things	your	design	should	accommodate:
• Handle	adding	or	removing	students	from	the	school
• Setting	the	name,	phone	number,	and	GPA	for	a	
particular	student

• Compute	the	average	GPA	of	all	the	students	in	the	
school

• Sort	the	students	by	last	name	to	print	out	a	report	of	
students	and	GPA

Discuss	and	come	up	with	a	design	with	those	near	you.		
How	many	classes	does	your	system	need?

Note	that

• Cohesion	makes	us	want:	
–Many	smaller	classes
– Classes	do	only	one	thing

• If	classes	are	too	small
– Tend	to	need	to	depend	on	each	other
– Coupling	rises

Hints	for	Designing	Classes

• Look	for	the	nouns	in	your	problem,	consider	
making	them	classes

• Keep	any	one	class	from	getting	too	“fat”	–
containing	too	many	methods	or	fields

• Avoid	Plural	Nouns
• Avoid	Parallel	Structures

Practice

• Step	1	– Get	into	pairs
• Step	2	– Do	the	Video	Store	Quiz	(you	should	
talk	together	but	each	of	you	will	submit	a	
separate	page)

• Step	3	– the	mystery	step,	where	we	try	and	
fix	the	problem

The	Mystery	Step

• The	problem	is	that	the	customer	object	is	not	
very	cohesive	– knows	way	too	much	about	
how	things	should	be	priced

• Add	a	getCost(int daysRented)	method	to	
Movie	and	make	statement()	call	it

• Try	to	do	something	similar	to	rental	points	if	
you	can

Scope is	the	region	of	a	program	in	
which	a	variable	can	be	accessed
• Parameter	scope: the	whole	method	body

• Local	variable	scope:	 from	declaration	to	block	end

public double myMethod() {
double sum = 0.0;
Point2D prev = this.pts.get(this.pts.size() - 1);
for (Point2D p : this.pts) {

sum += prev.getX() * p.getY();
sum -= prev.getY() * p.getX();
prev = p;

}
return Math.abs(sum / 2.0);

}

Variable	Scope

• Member	scope:	 anywhere	in	
the	class,	including	before its	
declaration
– Lets	methods	call	other	methods	

later	in	the	class

• public static class	
members	can	be	accessed	
from	outside	with	“class	
qualified	names”
– Math.sqrt()
– System.in

Member	Scope	(Field	or	Method)

Class MyClass {
. . .
// member variable declarations
. . .
public void aMethod(params…) {
. . .
// local variable declarations
. . .
for(int i = 0; i < 10; i++)
{. . . }
. . .

}
. . .

}

Member	Variable	
Scope

Method	
Parameter	
Scope

Local	Variable	
Scope

Block	scope

Overlapping	Scope	and	Shadowing

public class TempReading {
private double temp;

public void setTemp(double temp) {
… temp …

}
// …

}

this.temp = temp;

What	does	this	
“temp”	refer	to?

Always	qualify	field	references	with	
this.		It	prevents	accidental	

shadowing.

• Crazy	Eights	– see	due	date	on	schedule	page
• Work	with	your	partner	on	the	Crazy	Eights	project

– Get	help	as	needed
– Finding	your	partner…

Work	Time

Before	you	leave	today, make	sure	that	you	and	your	partner	have	scheduled	a	
session	to	complete	the	Crazy	Eights	project
• Where	will	you	meet?

• Try	the	CSSE	lab	F-217/225
• When	will	you	meet?

• Consider	this	evening,	
7	to	9	p.m.	Exchange	contact	info	in	case	one	of	you	needs	to	reschedule.

• Do	it	with	your	partner.		If	your	partner	bails	out,	DON’T do	it	alone	until	
you	communicate	with	your	instructor.

