CSSE 220

Objects

Check out SuperSimpleObjects and TeamGradebook from SVN



Plan for today

* Introduce how to write your own classes

* Talk about object references and box and
pointer diagrams

* Get started on TeamGradebook, your new
assignment



ldentifiers (Names) in Java

 The rules:
— Start with letter or underscore ()
— Followed by letters, numbers, or underscores

* The conventions:
—variableNamesLikeThis
—methodNamesLikeThis (...)
— ClassNamesLikeThis

* You should follow the conventions!



Using Objects and Methods

» Works just like Python: what?”

o object.method(argument, ...)

Explicit

Implicit

argument arguments
The dot notation is
also used for fields
P Java Example:

String name = "Bob Forapples";
PrintStream printer = System.out;

int nameLen = name.length() ;
printer.printf("'%s' has %d characters", name, namelen) ;



Class — What, When, Why, & How?

What:
* A blueprint for a custom type
When:

* Define a class when you’re representing a
concept (think nouns)

* When no other existing type can do what you
want/need



Class — What, When, Why, & How?

Why:
e Keep similar concepts together

* Encapsulation (we’ll get there in a bit)
How:

public class ClassName {
//fields

//methods



Constructors — What, When, Why, How?

What:

e Special method called when a new instance of a
class is created

e |nitializes the new instance
* Likethe init_ method in Python
When:

* Define a constructor when special initialization of
a class is required

* Otherwise, Java implicitly creates a no-argument
constructor if you don’t add one




Constructors — What, When, Why, How?

Why:

* Allows you to ensure that a new instance of a class is a setup
exactly how it needs to be before use of other methods/fields

 Putsitinagood state
How:
public class MyClass {
public MyClass() {
//initialization code
}
public MyClass(ParamType paramName) {
//initialization code

}



new Keyword— What, When, Why, How?

What:

* Used to create a new instance of a class
* Calls the constructor in the class

When:

* Creating a new instance of a class

— If the class definition is the blueprint for the
house, a house that has been built is the “new
instance” of the blueprint.



new Keyword— What, When, Why, How?

Why:
* To make a new instance
How:

e MyClass instance = new MyClass();

— This will call the constructor with the matching
parameters in MyClass

e Also used for arrays (as we’ve seen before):
— int[] arr = new int[5];



Implementing classes

* Live coding with Bank Account object
e Public/Private
* Static



Now code the StudentAssignments
class yourself

 Uncomment the stuff in
StudentAssignmentsMain to see what the

class ought to do

e Then create the class and add the constructors
and methods you need

* |f you finish early, add a function to compute
the student’s average grade



Differences between primitive types and object types in Java

OBJECT REFERENCES



What Do Variables Really Store?

* Variables of primitive type store values
e Variables of class type store references

1.1int x = 10; y

2.1nt y = 20;
3. Rectangle box = new Rectangle(x, y, 5, 5);



Assignment Copies Values

e Actual value for number types
* Reference value for object types

— The actual object is not copied

— The reference value (“the pointer”) is copied ~
_ the p Bl
* Consider: X

1. 1nt x = 10; : box?2
2.1nt y = X; y20
3.y = 20;

box

4. Rectangle box = new Rectangle(5, 6, 7, 8);
. Rectangle box2 = box;
6. box2.translate(4, 4);

(|



Boxes and lines exercise




Separating implementation details from how
an object is used

ENCAPSULATION



Encapsulation in
Object-Oriented Software

* Encapsulation—separating implementation
details from how an object is used

— Client code sees a bhlack box with a known
interface

Black box exposes

(U EELRTH SN Operation
the box implementation

"\
Objects

Constructor and
method signatures

Functions

Function signature

Data storage and
operation
implementation




Start on TeamGradebook

* Try to finish the code for both add-student
and get-names today

* |f you are confused about what to do, get
help!




