CSSE 220 Day 29

Performance with Threads

Checkout SumArrayinParallel project from SVN

We Used Threads For:

 We have used threads for achieving more
than one “thing” at a time

— Animation
— WebpageMonitor
— etc.

 What about performance?

— Could we not get better performance by creating
enough threads to divide them among different
processor cores?

Java Performance

* We may not see the performance gains in Java
that we can see in other languages, but there
are some gains to be had...

Conceptually

* The concept is pretty straightforward:

— If we have a large task and write a serial program,
that program runs on one core, doing one thing at
a time

— Running a program in one core on our machines

would be roughly as “fast” as running the same
program on a processor from 10 years ago!

— Modern processors have multiple cores
* HOW DO WE TAKE ADVANTAGE OF MULTIPLE CORES??

Modern Operating Systems

e Woo Hoo!

* Modern operating systems automatically
(more-or-less) send waiting threads to a
processor core that is waiting for work

* |f we write the program to allow the operating
system to assign threads to separate cores,
then our task (in this class) is just splitting up
the work into different threads!

Our Task Today

* We want to sum a huge array of integers

e Serially, we just add each array element to the
current sum and then return the sum when
finished

* With threads, we can split up the work very

easily because of the associative law of
addition

The idea

* When a very large task can be split into pieces

— Assign a thread to one piece and let that thread
return its result

12 |3 5 44 |-86 |5 -7 |66 |9 -74 142 |1

The idea

* When a very large task can be split into pieces

— Assign a thread to one piece and let that thread
return its result

Thread1l | Thread2 | Thread3 | Thread 4

12 |3 5 44 |-86 |5 -7 |66 |9 -74 (42 |1

The idea

* When a very large task can be split into pieces

— Assign a thread to one piece and let that thread
return its result

Thread 2 fThread 3 fThread 4

5

44 | -86

5|

1

66

Thread 1
20

N 37

-7
6

9 (74 | 42
3 K -31

Add individual portions and return result: 20

The Difference

* |[n our previous example, we can conceptually
see that one core adding 12 numbers is “more
work” than 4 cores adding 3 numbers, then
one of the cores finishing by adding 4
numbers to get the result

* IN REALITY, we need to sum a very large array
to see the performance gains in Java since the
threads are so heavyweight

— We’'ll use about 200,000,000 integers in an array!

Matrix Multiplication

* We have a running example of matrix
multiplication and how that is split into
different threads

Work time
PRESENTATION IS TOMORROW!!!

TEAM PROJECT

