CSSE 220 Day 17

Inheritance

Check out Inheritance from SVN



Discount Subclasses

* Work in pairs

* First look at my solution and understand how
it works

 Then draw a UML diagram of it



DiscountSubclasses live coding



Sometimes a new class is
of the concept represented
by another

Can “borrow” from an existing
class, changing just what we need

The new class from the
existing one:

— all methods

— all instance fields




Examples

— adds interest earning, keeps other traits

— adds pay information and methods, keeps other
traits

— adds information about employees managed,
changes the pay mechanism, keeps other traits



Notation and Terminology

« class SavingsAccount BankAccount {
// added fields
// added methods

« Say “SavingsAccount BankAccount”
: BankAccount

: SavingsAccount



Inheritance in U

The “superest” class

in Java

Object

BankAccount

Solid line
shows \ \

! "
. — Still means “is

I SavingsAccount l i



Interfaces vs. Inheritance

« class ClickHandler implements MouselListener

— ClickHandler promises to @I
methods of MouselListener

For client code reuse

« class CheckingAccount extends BankAccount

— CheckingAccount inherits\\gr .
methods of BankAccount For implementation

code reuse



Inheri

‘ JPanel I JTextComponent ‘ JLabel \ ‘AbstractButton I
‘ JTextField \ ‘ JTextArea \ ‘JToggleButton I ‘ JButton \

JCheckBox JRadioButton




With Methods, Subclasses can:

methods

methods
— Declare a new method to use

entirely new methods not in superclass



With Fields, Subclasses:

 ALWAYS inherit all fields unchanged

e Can add en%el

DANGER! Don’t use the

same name as a superclass
field!




Super Calls

e Calling superclass method:
— super.methodName(args) ;

* Calling superclass constructor:
— super(args);

Must be the first line of
the subclass constructor




Polymorphism and Subclasses

* A subclass instance is a superclass instance
— Polymorphism still works!

— BankAccount ba.= new CheckingAccount();
ba.deposit (108);\

For client code reuse

 But not the other way around!
— CheckingAccount ca = new BankAccount();

ca.deductFees () ;\
 Why not? BOOM |



Another Example

e Can use:

in BankAccount

e To transfer between different accounts:



Also look at the
code in the
shapes package,
especially

Abstract Classes

* Hybrid of superclasses and interfaces Sl e
_ (during or after
— Like regular superclasses: class)
* Provide implementation of some methods

— Like interfaces

 Just provide signatures and docs of other methods
e Can’t be instantiated

e Example:

— public abstract class BankAccount {
/*% documentation here */
public abstract void deductFees():

oo~

Elided methods as before



Access Modifiers

* Review
—any code can see it
—only the class itself can see it

 Others —
— default (i.e., no modifier)—only code
in the same can see it
* good choice for classes Bad for
—like default, but fields!
subclasses also have access
* sometimes useful for helper methods




Make a shape hierarchy

Work in pairs

All shapes have an upper left coordinate, plus width and
height

They all have a method to compute their area and perimeter
(hint — abstract)

They all have a method printData that prints their height
width area and perimeter (hint — in superclass)

Write code for Shape, Rectangle, Circle and test it

Then make CoolCircle a non-abstract subclass of Circle which
overrides one method to do something different and test it



Linear Lights Out
It's a solo project, but feel free to talk with others as you do it.

And to ask instructor/assistants for help

WORK TIME




BALLWORLDS INTRODUCTION



