CSSE 220 Day 14

Interfaces and Event Based Programming

Check out EventBasedProgramming from SVN

Plan for Today

» Interfaces
» Event Listeners

» Java Swing

p—

What Interfaces Do

» EXpress common operations that multiple
classes might have in common

» Make “client” code more reusable

» Provide method signatures and
documentation

» Do NOT provide method implementations or
fields

Interface Types: Key Ildea

» Interface types are like contracts

> A class can promise to implement an interface
- That is, implement every method

> Client code knows that the class will have those
methods

- Compiler verifies this

- Any client code designed to use the interface type
can automatically use the class!

Live Coding

Charges UML

ChargeMain

—————————————————————

- -constructs-a _ 5.1 pointCharge

Distinguishes
interfaces
from classes

————————————

| _ _constructs-a _ _s, Space
"
|
: has-a
Hollow, ‘i’
_closed «interface»
triangular Charge
tip means
PointCharge /A
is a Charge |j=————— '

Vector

Notation: In Code~"

public interface Charge {
/**
* regular javadocs here
*/
Vector forceAt(int x, int y);

No “public”, Jl/** No method

automatically * r'egular' javadocs here body,Just |
are so y semi-colon

void drawOn(Graphics2D g);

}

public class PointCharge implements Charge {

Y 4
PointCharge promises to implement all the
methods declared in the Charge interface

Updated Charges UML

ChargeMain |- --constructs-a _ Space Fesssssssssss s
|
: :
' |
: has-a ,
|

|
; {

«interface»
Charge Vector

- . constructs-a .
- -constructs-a _ 5.1 pojntCharge |[<--------- LinearCharge |-

i A

Interfaces reduce coupling!

How does all this help reuse?

» Can pass an instance of a class where an
interface type is expected
- But only /f the class implements the interface

» We passed LinearCharges to Space’s
addCharge(Charge c) method without
changing Space!

» Use interface types for field, method
parameter, and return types whenever
possible

Polymorphism

» Origin:
> Poly 2 many
> Morphism = shape

» Classes implementing an interface give many
differently “shaped” objects for the interface

type

» Late Binding: choosing the right method
based on the actual type of the implicit
parameter at run time

Why is this OK?

» Charge c¢ = new PointCharge(..);
Vector vl = c.forceAt(..);
C = new LinearCharge(..);
Vector v2 = c.forceAt(..);

» The type of the actual object determines the
method used.

p—

Break Time, then Java Swing!

Graphical User Interfaces in Java

» We say what to draw

» Java windowing library:
> Draws it
- Gets user input
> Calls back to us with events

» We handle events

Handling Events

» Many kinds of events:

- Mouse pressed, mouse released, mouse moved,
mouse clicked, button clicked, key pressed, menu
item selected, ...

» We create event listener objects
- that implement the right interface
> that handle the event as we wish

» We register our listener with an event source
> Sources: buttons, menu items, graphics area, ...

Using Inner Classes

» Classes can be defined inside other classes or
methods

» Used for “smallish” helper classes

» Example: E111ipse2D.Double

S/ L

» Often used for ActionListeners...

p—

Inner Classes and Scope

» Inner classes can access any variables in
surrounding scope

» Caveats:

> Local variables must be final

> Can only use instance fields of surrounding scope if
we’re inside an instance method

» Example:
- Prompt user for what porridge tastes like

Anonymous Classes

» Sometimes very small helper classes are only
used once
> This is a job for an anonymous class!

» ANonymous = no hame
» A special case of inner classes

» Used for the simplest ActionListeners...

Key Layout Ideas

» JFrame’s add(Component ¢) method
- Adds a new component to be drawn
> Throws out the old one!
» JFrame also has method
add(Component ¢, Object constraint)
> Typical constraints:
- BorderLayout.NORTH, BorderLayout.CENTER
- Can add one thing to each “direction”, plus center
» JPanel is a container (a thing!) that can display
multiple components

Charge!

J.
rrrr S

| ZoomIn Zoom Qut

Repaint (and thin no more)

» To update graphics:
- We tell Java library that we need to be redrawn:

+ space.repaint()
> Library calls paintComponent() when it’s ready

» Don’t call paintComponent() yourself! It’s
just there for Java’s call back.

p—

Mouse Listeners

public interface MouselListener {

public
public
public
public
public

p—

void
void
void
void
void

mouseCl icked(MouseEvent e);
mouseEntered(MouseEvent e);
mouseExited(MouseEvent e);

mousePressed(MouseEvent e);
mouseRel eased(MouseEvent e);

