
Interfaces and Event Based Programming

Check out EventBasedProgramming from SVN

 Interfaces

 Event Listeners

 Java Swing

 Express common operations that multiple
classes might have in common

 Make “client” code more reusable

 Provide method signatures and
documentation

 Do NOT provide method implementations or
fields

Q1&2

 Interface types are like contracts

◦ A class can promise to implement an interface

 That is, implement every method

◦ Client code knows that the class will have those
methods

 Compiler verifies this

◦ Any client code designed to use the interface type
can automatically use the class!

Q3

Charges Demo

Distinguishes
interfaces

from classes

Hollow,
closed

triangular
tip means

PointCharge
is a Charge

Q4

public interface Charge {
/**
* regular javadocs here
*/
Vector forceAt(int x, int y);

/**
* regular javadocs here
*/
void drawOn(Graphics2D g);

}

public class PointCharge implements Charge {
…

}

interface, not class

No method
body, just a
semi-colon

No “public”,
automatically

are so

PointCharge promises to implement all the
methods declared in the Charge interface Q5

Interfaces reduce coupling!

 Can pass an instance of a class where an
interface type is expected
◦ But only if the class implements the interface

 We passed LinearCharges to Space’s
addCharge(Charge c) method without
changing Space!

 Use interface types for field, method
parameter, and return types whenever
possible

Q6

 Origin:
◦ Poly  many

◦ Morphism  shape

 Classes implementing an interface give many
differently “shaped” objects for the interface
type

 Late Binding: choosing the right method
based on the actual type of the implicit
parameter at run time

 Charge c = new PointCharge(…);
Vector v1 = c.forceAt(…);
c = new LinearCharge(…);
Vector v2 = c.forceAt(…);

 The type of the actual object determines the
method used.

 We say what to draw

 Java windowing library:
◦ Draws it

◦ Gets user input

◦ Calls back to us with events

 We handle events

 Many kinds of events:
◦ Mouse pressed, mouse released, mouse moved,

mouse clicked, button clicked, key pressed, menu
item selected, …

 We create event listener objects
◦ that implement the right interface

◦ that handle the event as we wish

 We register our listener with an event source
◦ Sources: buttons, menu items, graphics area, …

Q7

 Classes can be defined inside other classes or
methods

 Used for “smallish” helper classes

 Example: Ellipse2D.Double

 Often used for ActionListeners…

Outer class Inner class

Q8

 Inner classes can access any variables in
surrounding scope

 Caveats:
◦ Local variables must be final

◦ Can only use instance fields of surrounding scope if
we’re inside an instance method

 Example:
◦ Prompt user for what porridge tastes like

 Sometimes very small helper classes are only
used once
◦ This is a job for an anonymous class!

 Anonymous  no name

 A special case of inner classes

 Used for the simplest ActionListeners…

Layout in Java windows

 JFrame’s add(Component c) method
◦ Adds a new component to be drawn

◦ Throws out the old one!

 JFrame also has method
add(Component c, Object constraint)
◦ Typical constraints:

 BorderLayout.NORTH, BorderLayout.CENTER

◦ Can add one thing to each “direction”, plus center

 JPanel is a container (a thing!) that can display
multiple components

Q9-10

So, how do we do this?

 To update graphics:
◦ We tell Java library that we need to be redrawn:

 space.repaint()

◦ Library calls paintComponent() when it’s ready

 Don’t call paintComponent() yourself! It’s
just there for Java’s call back.

Q11

public interface MouseListener {

public void mouseClicked(MouseEvent e);

public void mouseEntered(MouseEvent e);

public void mouseExited(MouseEvent e);

public void mousePressed(MouseEvent e);

public void mouseReleased(MouseEvent e);

}

Q12

Linear Lights Out

