
CSSE 220 Day 13

Details on class implementation,

Interfaces and Polymorphism

Check out OnToInterfaces from SVN

Questions?

Today

• Variable scope

• Interfaces and polymorphism

Variable Scope
Scope is the region of a program in
which a variable can be accessed

• Parameter scope: the whole method body

• Local variable scope: from declaration to block end

public double myMethod() {
 double sum = 0.0;
 Point2D prev = this.pts.get(this.pts.size() - 1);
 for (Point2D p : this.pts) {
 sum += prev.getX() * p.getY();
 sum -= prev.getY() * p.getX();
 prev = p;
 }
 return Math.abs(sum / 2.0);
}

Why do you suppose scoping exists?
What happens if two variables have the
same name in the same code location?

• Please take 15 seconds and think about it

• Turn to neighbor and discuss it for a minute

• Then let’s talk?

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=EDVBJBfLlAHT2M&tbnid=naHgZu_LhwwUAM:&ved=0CAUQjRw&url=http://psdblast.com/stopwatch-icon-psd&ei=IV_KUsWPIcfIyAG07YDACw&psig=AFQjCNFZrWog4vdCM_-TObjXWD7KJd1l9A&ust=1389080717457367

Member Scope (Field or Method)

• Member scope: anywhere in
the class, including before its
declaration
– Lets methods call other methods

later in the class

• public static class
members can be accessed
from outside with “class
qualified names”
– Math.sqrt()

– System.in

Class MyClass {

 . . .

 // member variable declarations

 . . .

 public void aMethod(params…) {

 . . .

 // local variable declarations

 . . .

 for(int i = 0; i < 10; i++)

 {. . . }

 . . .

 }

 . . .

}

Member Variable
Scope

Method
Parameter

Scope

Local Variable
Scope

Block scope

Q1-2

Overlapping Scope and Shadowing

public class TempReading {
 private double temp;

 public void setTemp(double temp) {
 … temp …

 }
 // …
}

 this.temp = temp;

What does this
“temp” refer to?

Always qualify field references with
this. It prevents accidental

shadowing.

Today

• Variable scope

• Interfaces and polymorphism

Interface Types

• Express common operations that multiple
classes might have in common

• Make “client” code more reusable

• Provide method signatures and
documentation

• Do not provide method implementations or
fields

Interface Types: Key Idea

• Interface types are like contracts

– A class can promise to implement an interface
• That is, implement every method

– Client code knows that the class will have those
methods
• Compiler verifies this

– Any client code designed to use the interface type can
automatically use the class!

Live Coding Activity

• Countries, Balances, and Measurable

EXAMPLE
Charges Demo

Charges UML
Distinguishes

interfaces from
classes

Hollow, closed
triangular tip

means
PointCharge is

a Charge

Q4

Notation: In Code
public interface Charge {
 /**
 * regular javadocs here
 */
 Vector forceAt(int x, int y);

 /**
 * regular javadocs here
 */
 void drawOn(Graphics2D g);
}

public class PointCharge implements Charge {
 …
}

interface, not class

No method
body, just a
semi-colon

No “public”,
automatically

are so

PointCharge promises to implement all the methods
declared in the Charge interface

Updated Charges UML

Interfaces reduce coupling!
Q6

How does all this help reuse?

• Can pass an instance of a class where an interface
type is expected

– But only if the class implements the interface

• We passed LinearCharges to Space’s
addCharge(Charge c) method without
changing Space!

• Use interface types for field, method parameter,
and return types whenever possible

Q6

Why is this OK?

• Charge c = new PointCharge(…);
Vector v1 = c.forceAt(…);
c = new LinearCharge(…);
Vector v2 = c.forceAt(…);

• The type of the actual object determines the
method used.

Polymorphism

• Origin:
– Poly  many
– Morphism  shape

• Classes implementing an interface give many
differently “shaped” objects for the interface
type

• Late Binding: choosing the right method based
on the actual type of the implicit parameter at
run time

Q8-Q9

WORK TIME

