CSSE 220 Day 12

Coupling and Cohesion
Scoping

Please download VideoStore from your SVN



The plan

* Learn 3 essential object oriented design
terms:

— Encapsulation (check)
— Coupling
— Cohesion

* Scope (if we have time)



Coupling and Cohesion

 Two terms you need to memorize

* Good designs have high cohesion and low
coupling

At a very high level:

* Low cohesion means that you have a small
number of really large classes that do too

much stuff

* High coupling means you have many classes
which depend too much on each other



Imagine | want to make a Video Game.
Here are two classes in my design.
Which is more cohesive?

GameRunner Image

main(args:String) loadimageFile(filename:String)
loadLevel(levelName:String) setPosition(x:int,y:int)
moveEnemies() drawlmage(g:Graphics2D)

drawlLevel(g:Graphics2D)
computeScore():int
computeEnemyDamage()
handlePlayerinput()
doPowerups(...)

runCutscene(cutsceneName:String)
//some more stuff

*Note that in both these classes I’'ve omitted the fields for clarity



Cohesion

* A class should represent a single concept. All
interface features should be closely related to
the single concept that the class represents.
Such a class is said to be cohesive.

- Your textbook



Dependency Relationship

* When one class requires another class to do its
job, the first class depends on the second

CSSE_Freshmen

e Shown on UML
diagrams as:

void add(ArrayList<Student> students)

— dashed line I

I
— with open arrowhead I

Student

string getFreshmen()




Coupling
* Coupling is one object depends strongly on another

//do setup must be called first
this.otherObject.doSetup(varl, var2, var3);

//now we compute the parameter
int var4 = computeForOtherObject (varl,var2)
this.otherObject.setAdditionalParameter (var4) ;

//finally we display
this.otherObject.doDisplay(this.var5, this.varé6);



Note that in this design, GameRunner probably had
many objects of the image class, but Image does not
know the GameRunner class even exists. That’s a sign
of low coupling between Image and GameRunner.

GameRunner

main(args:String)
loadLevel(levelName:String)
moveEnemies()
drawlLevel(g:Graphics2D)
computeScore():int
computeEnemyDamage()
handlePlayerinput()
doPowerups(...)
runCutscene(cutsceneName:String)
//some more stuff

Image

loadlmageFile(filename:String)
setPosition(x:int,y:int)
drawlmage(g:Graphics2D)



Coupling

* Lot’s of dependencies =» high coupling

* Few dependencies = low coupling




If we do our design job carefully

 We will break our larger problem into several
classes

e Each of these classes will do one kind of thing
(i.e. they will have high cohesion)

* QOur classes will only need to depend on each
other in specific, highly limited ways (i.e. they
will have low coupling). Many classes won’t
even be aware of most of the other classes in
the system.



Imagine that you're writing code to
manage a school’s students

Things your design should accommodate:
 Handle adding or removing students from the school

e Setting the name, phone number, and GPA for a
particular student

 Compute the average GPA of all the students in the
school

e Sort the students by last name to print out a report of
students and GPA

Discuss and come up with a design with those nearby
you. How many classes does you system need?



Note that

* Cohesion will tend to want us to make many
smaller classes, each of which will do only one
thing

e Butif the classes are too small, they’ll tend to
need to depend on each other to do work,
and the coupling will get bad



Hints #1 for Designing Objects

Look for the nouns in your problem, consider
making them objects

Keep any one objects from getting too “fat” —
containing too many methods or fields

Avoid Plural Nouns
Avoid Parallel Structures



Practice

* Step 1 — Get into pairs

e Step 2 — Do the Video Store Quiz (you should
talk together but each of you will submit a
separate page)

e Step 3 —the mystery step, where we try and
fix the problem



The Mystery Step

* The problem is that the customer object is not
very cohesive — knows way to much about
how things should be priced

* Add a getCost(int daysRented) method to
Movie and make statement() call it

* Try to do something similar to rental points if
you can



Game of Life

1. A new cellis born on an

empty square if it has

exactly 3 neighbor cells
2. Acell dies of

overcrowding if it is X
surrounded by 4 or more
neighbor cells f
3. Acells dies of loneliness Neighbors
if it has just O or 1 -

neighbor cells

Developed by John Conway, 1970



Game of Life hints:

Follow the TODOQO’s. Test as frequently as practical.

— If a partis hard, break it down into sub-parts and test each sub-part as
you go.

There are some clever ways to avoid cluttering code that

references cells with IF’s to ensure that you are properly
retrieving neighbors that wrap around the grid:

— How to “Wrap” -- If the board is 10x10, attempting to reference:
board[10] [3] -- converttoboard[0] [3]

* (using the % operator on rows and columns) 10%10=0; 10 % 3 = 3.
* (totalRows % x = row value)
* totalColumns % y = columnVlu
— Write a “getter” that gets the value of a cell and returns the correct value (0?) if
the reference is off the edge of the board. Ditto for a “setter” if needed.



Animating Game of Life

* How: use Timer class to automatically “click”
button

* Details: in GameOfL1feMain:
— Use local variable for UpdateButton object

— Add timer code to end of main to repeatedly click
button at regular intervals:

e Timer mrClicker =
new Timer (INTERVAL,

updateButton);
mrClicker.start(Q);

* Learn more: Big Java, Ch. 9.9



Work Time

* Game of life due a week from Monday 11:59

 Work with your partner on the Game of Life project
— Get help as needed
— Finding your partner...

Before you leave today, make sure that you and your partner have scheduled a
session to complete the Game of Life project
* Where will you meet?
» Try the CSSE lab F-217/225
 When will you meet?
* Consider this evening,
7 to 9 p.m. Exchange contact info in case one of you needs to reschedule.

* Do it with your partner. |f your partner bails out, DON'T do it alone until you communicate
with your instructor.




Variable Scope
Scope is the region of a program in ;ﬁpues

which a variable can be accessed \J

* Parameter scope: the whole method body

* Local variable scope: from declaration to block end

public double myMethod() {
double sum = 0.0;
Point2D prev = this.pts.get(this.pts.size() - 1);
for (Point2D p : this.pts) {
sum += prev.getX() * p.getY();
sum -= prev.getY() * p.getX();
prev = p;

}
return Math.abs(sum / 2.0);



Why do you suppose scoping exists?
What happens if two variables have the
same name in the same code location?

 Please take 15 seconds and think about it
* Turn to neighbor and discuss it for a minute
e Then let’s talk?




Member Scope (Field or Method)

Member Variable
* Member scope: anywhere in Scope
Class MyClass A

the class, including before its

declaration // member variable dec pg/lr:::tder
— Lets methods call other methods Scope
later in the class public void aMethod(params..
}/.lc.Jcal variable HRECIAEIELIE
 public staticclass C . Scope
members can be accessed for(int i = @; i < 10; i++)
from outside with “class o o o

qualified names” ) x
— Math.sqrt() Co.



Overlapping Scope and Shadowing

public class TempReading {
private double temp;

public void setTemp(double temp) {
this.temp = temp;

} \
// ..

} What does this

“temp” refer to?

Always qualify field references with

. It prevents accidental
shadowing.




What you have learned

* Learn 3 essential object oriented design
terms:

— Encapsulation
— Coupling
— Cohesion

* Scope (if we have time)



