
CSSE 220 Day 11

Designing Classes and Object Oriented Design

WHAT IS GOOD
OBJECT-ORIENTED DESIGN?

It starts with good classes…

Why do we use classes?

• Model Real Life Scenarios

• Maintainability

– Modular Structure

– Hides Implementation Details

– Data Hiding (helps prevent Data Corruption)

– Separation of Responsibilities

• Higher Quality Software

• Software/Code Reuse

Designing a Car Class

Does something feel wrong
about this?

• Cluttered

• Too Many Responsibilities

• Difficult to Understand

• Hard to Maintain

Good Classes Typically

• Come from nouns in the problem description
• May…

– Represent single concepts
• Circle, Investment

– Represent visual elements of the project
• FacesComponent, UpdateButton

– Be abstractions of real-life entities
• BankAccount, TicTacToeBoard

– Be actors
• Scanner, CircleViewer

– Be utility classes that mainly contain static methods
• Math, Arrays, Collections

What Stinks? Bad Class Smells*

• Can’t tell what it does from its name
– PayCheckProgram

• Turning a single action into a class
– ComputePaycheck

• Name isn’t a noun

– Interpolate, Spend

Function

objects are an

exception.

Their whole

purpose is to

contain a single

computation

*See http://en.wikipedia.org/wiki/Code_smell

http://c2.com/xp/CodeSmell.html

http://en.wikipedia.org/wiki/Code_smell
http://c2.com/xp/CodeSmell.html

A Better Car Class

Common Code Smells

• Duplicated Code

• Long Method

• Large Class

• Too Many Parameters

• Feature Envy

• Inappropriate Intimacy

• Lazy Class

• Complex Conditionals

• Magic Numbers

Accessors and Mutators

• Accessor method: accesses information
without changing any

• Mutator method: modifies the object on
which it is invoked

Immutable Classes

• Accessor methods are very predictable
– Easy to understand

• Immutable classes:
– Have only accessor methods
– No mutators

• Examples: String, Double

• Is Rectangle immutable?

Immutable Class Benefits

• Easier to reason about, less to go wrong

• Can pass around instances “fearlessly”

Q9

Side Effects

• Side effect: any modification of data

• Method side effect: any modification of data
visible outside the method
– Mutator methods: side effect on implicit parameter

– Can also have side effects on other parameters:
• public void transfer(double amt, Account other)

{

this.balance -= amt;

other.balance += amt;

}

Avoid this if you can!

Perspective Matters

• How You Model Objects Depends on Your
Code’s Objectives

– Movies

• IMDB

• Amazon

– Car

• Mechanic

• Car Pool System

• Dealership

CLASS DESIGN EXERCISE

Work with your table and map out the classes given to you

WORK TIME

