
CSSE 220 Day 3

Unit Tests and Object References

Implementing Classes in Java, using

Documented Stubs, Test-First Programming

Check out UnitTesting and
WordGames from SVN

What Questions Do You Have?

Syllabus

Reading assignments

Homework

Things discussed in class

Anything else

Javadocs: Key Points

• Don’t try to memorize the Java libraries
– Nearly 9000 classes and packages!

– You’ll use a few dozen of them during this course

• Get in the habit of writing the javadocs before
implementing the methods
– It will help you think before doing, a vital software

development skill

– This is called programming with documented stubs

– I’ll try to model this. If I don’t, call me on it!

Q1

WRITING CODE TO
TEST YOUR CODE

Test-driven Development,
unit testing and JUnit

Unit Testing
• Using code that you write to test other code

– Focused on testing individual pieces of code (units) in isolation

• Individual methods

• Individual classes

• Why would software engineers do unit testing?

Q2

Unit Testing With JUnit

• JUnit is a unit testing framework
– A framework is a collection of classes to be used

in another program.

– Does much of the work for us!

• JUnit was written by
– Erich Gamma

– Kent Beck

• Open-source software

• Now used by millions of Java developers

Q3

JUnit Example

• MoveTester in Big Java shows how to write
tests in plain Java

• Look at JUnitMoveTester in today’s repository

– Shows the same test in JUnit

– Let’s look at the comments and code together…

Interesting Tests

• Test “boundary conditions”
– Intersection points: -40℃ == -40℉
– Zero values: 0℃ == 32℉
– Empty strings

• Test known values: 100℃ == 212℉
– But not too many

• Tests things that might go wrong
– Unexpected user input: “zero” when 0 is expected

• Vary things that are “important” to the code
– String length if method depends on it
– String case if method manipulates that

Important Slide: Use this as a
reference!

EXERCISE
Unit test shout, whisper, and holleWerld using “interesting” test cases

OBJECT REFERENCES
Differences between primitive types and object types in Java

What Do Variables Really Store?

• Variables of primitive type store values

• Variables of class type store references

– A reference is like a pointer in C, except

• Java keeps us from screwing up

• No & and * to worry about
(and the people say, “Amen”)

• Consider:
1. int x = 10;

2. int y = 20;

3. Rectangle box = new Rectangle(x, y, 5, 5);

10 x

20 y

5

10

20

5

box

Q4

Assignment Copies Values

• Actual value for number types

• Reference value for object types

– The actual object is not copied

– The reference value (“the pointer”) is copied

• Consider:

1. int x = 10;

2. int y = x;

3. y = 20;

4. Rectangle box = new Rectangle(5, 6, 7, 8);

5. Rectangle box2 = box;

6. box2.translate(4, 4);

10 x

10 y 8

5

6

7
box

× 20
box2

× 9

× 10

Q5 – Q6

 ENCAPSULATION
Separating implementation details from how
an object is used

Encapsulation in
Object-Oriented Software

• Encapsulation—separating implementation
details from how an object is used

– Client code sees a black box with a known
interface

– Implementation can change without changing
client

Functions Objects

Black box exposes Function signature Constructor and
method signatures

Encapsulated inside
the box

Operation
implementation

Data storage and
operation
implementation

Q7 – Q8

Interlude

How To: Implement a Class
1. Create the (initially empty) class

– File ⇒ New ⇒ Class

2. Write documented stubs for the public interface of the class

3. Implement the class:

– Determine and implement instance fields

– Implement constructors and methods, adding private methods and additional
instance fields as needed

4. Test the class

3. Test and implement each
constructor and method
• Write the test cases BEFORE implementing the

constructor/method

LIVE CODING
WordGames Shouter

Censor
• Censor: given a string inputString, produces a new string by replacing

each occurrence of charToCensor with a “*” (an asterisk).

• How do you deal with charToCensor ?

– Can it be a parameter of transform?

• No, that violates the specification

– Can it be a local variable of transform?

• No, it needs to live for the entire lifetime of the Censor.

– What’s left?

• Answer: It is a field ! (What is a sensible name for the field?)

• How do you initialize the field for charToCensor ?

– Answer: by using Censor’s constructors!

LIVE CODING
WordGames Censor

WRAP UP QUIZ
AND TURN IT IN

Continue with homework if time permits

Q9 – Q10

