
CSSE 220 Day 26

Linked List Implementation

Checkout LinkedListSimple project from SVN

DATA STRUCTURES
Understanding the engineering trade-offs when storing data

Data Structures

• Efficient ways to store data based on how
we’ll use it

• The main theme for the rest of the course

• So far we’ve seen ArrayLists
– Fast addition to end of list

– Fast access to any existing position

– Slow inserts to and deletes from middle of list

Big-O Notation

• Describes the limiting behavior

– How slow it can possibly run?

– Describes the worst case

• Used for Classifying Algorithm Efficiency

• “O” for “Order”

– O(n)  said as “Order n”

– O(n^2)  said as “Order n-squared”

Big-O Notation (continued)

• Don’t Care About Constants

– O(2n + 7)  O(n)

• Don’t Care About Smaller Powers

– O(6n^2 + 7n) O(n^2)

– Algorithm grows asymptotically no faster than n^2

• If constant value, we say O(1)  “Order 1”

– O(48)  O(1)

• Get into pairs

• Look at/run the code in LinkedList.java main

• Draw a boxes and pointer diagram of what’s
happening in the main code (your diagram should
show the final state). To figure it out you’ll have
to look at the LinkedList constructor and
addAtBeginning.

• If you’ve forgotten how to do a boxes and pointer
diagram, checkout the handout on Day 4 of the
schedule

Another List Data Structure

• What if we have to add/remove data from a
list frequently?

• LinkedLists support this:

– Fast insertion and removal of elements

• Once we know where they go

– Slow access to arbitrary elements

data

data

data

data

data null

Insertion, per Wikipedia

LinkedList<E>Methods

• void addFirst(E element)

• void addLast(E element)

• E getFirst()

• E getLast()

• E removeFirst()

• E removeLast()

• What about accessing the middle of the list?
– LinkedList<E> implements Iterable<E>

Linked Lists Day 2

Linked List Implementation

Checkout SinglyLinkedList project from SVN

3 Topics

• Generics

• Iterators

• Debugging

Let’s modify our simple linked list to
take arbitrary objects!

• Two ways:

– Object

– Generics

• Type parameters:
– class DLList<E>

• Bounds:
– class DLList<E extends Comparable>
– class DLList<E extends Comparable<E>>
– class DLList<E extends Comparable<? super E>>

• Generic methods:
– public static <T> void shuffle(T[] array)

• http://docs.oracle.com/javase/tutorial/java/generics/index.html

Generics Advanced

What are iterators and why do they
exist?

• Iterators are objects designed to encapsulate a
position in a data structure – in the case, a
pointer to a current (and previous) node in a
list

• Your textbook has a detailed discussion of the
operation of linked list iterators, including lots
of sample code

Accessing the Middle of a LinkedList

An Insider’s View

Enhanced For Loop

for (String s : list) {

// do something

}

What Compiler Generates

Iterator<String> iter =

list.iterator();

while (iter.hasNext()) {

String s = iter.next();

// do something

}

Implementing LinkedList

• A simplified version, with just the essentials

• Won’t implement the java.util.List interface

• Will have the usual linked list behavior

– Fast insertion and removal of elements

• Once we know where they go

– Slow random access

Using the debugger

TEAM PROJECT WORK TINE
LodeRunner next cycle due next class

