

Some Software Engineering Techniques
(Class Diagrams, Pair Programming

& Version Control)
Game of Life Exercise

Hint: software is the part of a computer system
that is suppose to change!

 Take 15 seconds and think about it

 Turn to neighbor and discuss what you think
for a minute

 Let’s talk?

Waterfall

Extreme Programming

Spiral

Iterative

Incremental

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=EDVBJBfLlAHT2M&tbnid=naHgZu_LhwwUAM:&ved=0CAUQjRw&url=http://psdblast.com/stopwatch-icon-psd&ei=IV_KUsWPIcfIyAG07YDACw&psig=AFQjCNFZrWog4vdCM_-TObjXWD7KJd1l9A&ust=1389080717457367

 Starting with Abstract Requirements,
successively Elaborate and Refine
them into specifications, models,
and more concrete implementation

 A Software Process organizes
the life cycle activities related
to the creation, delivery, and
maintenance/evolution of
software systems

Q1, 2

 Class Diagramming

 Pair programming

 Team version control

 Brief mention of Regression Testing

ProductCatalog

...

getProductDesc(...)

Sale

isComplete : Boolean

time : DateTime

becomeComplete()

makeLineItem(...)

makePayment(...)

getTotal()

Register

...

endSale()

enterItem(id: ItemID, qty : Integer)

makeNewSale()

makePayment(cashTendered : Money)

public class Register

{

private ProductCatalog catalog;

private Sale currentSale;

public Register(ProductCatalog pc) {...}

public void endSale() {...}

public void enterItem(ItemID id, int qty) {...}

public void makeNewSale() {...}

public void makePayment(Money cashTendered) {...}

}

1

1

catalog

currentSale

 Shows the:
◦ Attributes

(data, called fields
in Java) and

◦ Operations
(functions, called
methods in Java)

of the objects of a class

 Does not show the
implementation

 Is not necessarily
complete

String

data: char[]

boolean contains(String s)

boolean endsWith(String suffix)

int indexOf(String s)

int length()

String replace(String target,
 String replace)

String substring(int begin,
 int end)

String toLowerCase()

Class name

Fields

Methods
String objects are immutable – if the method produces
a String, the method returns that String rather than
mutating (changing) the implicit argument Q3

 Task: Make Class
diagrams for the
Censor and
CensorTest classes
from Word Games

Class Name

Fields

Methods

Censor

characterToCensor: char

String transform(String
 stringToTransform)

CensorTest

censorEvery_e: Censor
censorEvery_a: Censor

setup()

testAllCensorCharacters()

testNoCensorCharacters()

testCensoringAn_a()

testUpperAndLowerCase()

testSpecialCharacters()

testAstrisks()

testEmptyString()

testLongString()

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=h3BrsyX4lX5dRM&tbnid=wSvy9XIRywGLzM:&ved=0CAUQjRw&url=http://www.fabio-rocha.com/category/programming-tips/&ei=ZlPKUq_dHYGMyQGD54CoDA&bvm=bv.58187178,d.aWc&psig=AFQjCNF2cgViwv_A69WXzzBKqxYXmLTSng&ust=1389073990404033

 Two programmers work side-by-side at a computer,
continuously collaborating on the same design,
algorithm, code, and/or test

 Enable the pair to produce higher quality code than
that produced by the sum of their individual efforts

 Let’s watch a video…

Q4

http://www.rose-hulman.edu/class/csse/binaries/VideoDemos/pairprogramming.mov
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=2su5DL6nOdzlvM&tbnid=nY7kpcTF_FtAtM:&ved=0CAUQjRw&url=http://www.agile66.com/blogs/2010/02/23/sustainability/&ei=LkbKUs_AN-WuyQHZioHICw&bvm=bv.58187178,d.aWc&psig=AFQjCNF2cgViwv_A69WXzzBKqxYXmLTSng&ust=1389073990404033

 Working in pairs on a single computer
◦ The driver, uses the keyboard, talks/thinks out-

loud

◦ The navigator, watches, thinks, comments, and
takes notes

◦ Person who really understands should start by
navigating 

 For hard (or new) problems, this technique
◦ Reduces number of errors

◦ Saves time in the long run

Q5

 Pair-Pressure
◦ Keep each other on task and focused
◦ Don’t want to let partner down

 Pair-Think
◦ Distributed cognition:

 Shared goals and plans
 Bring different prior experiences to the task
 Must negotiate a common shared of action

 Pair-Relaying
◦ Each, in turn, contributes to the best of their knowledge

and ability
◦ Then, sit back and think while their partner fights on

Abstracted from: Robert Kessler and Laurie Williams Q6

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=Prgl_cokhQpVaM&tbnid=qbwb8SW89o9gfM:&ved=0CAUQjRw&url=http://tommcfarlin.com/pair-programming-peer-discussions/&ei=cUzKUqOrIqr4yAGG04HICQ&bvm=bv.58187178,d.aWc&psig=AFQjCNF2cgViwv_A69WXzzBKqxYXmLTSng&ust=1389073990404033

 Pair-Reviews
◦ Continuous design and code reviews

◦ Improved defect removal efficiency (more eyes to identify errors)

◦ Removes programmers distaste for reviews (more fun)

 Debug by describing
◦ Tell it to the “Rosie in the Room”

 Pair-Learning
◦ Continuous reviews  learn from partners

◦ Apprenticeship

◦ Defect prevention always more efficient than defect removal

Abstracted from: Robert Kessler and Laurie Williams Q7

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&docid=km96QeSMdRZ4tM&tbnid=0kPgYCQPG3UMWM:&ved=0CAUQjRw&url=http://www.printfection.com/codesmack/Pair-Programming-T-Shirt/_p_870059&ei=mU7KUvHRBeGSyAHyn4GwCA&bvm=bv.58187178,d.aWc&psig=AFQjCNF2cgViwv_A69WXzzBKqxYXmLTSng&ust=1389073990404033

Expert paired with an Expert

Expert paired with a Novice

Novices paired together Professional Driver Problem Culture

Source: Robert Kessler and Laurie Williams

 Take 15 seconds and think about it

 Turn to neighbor and discuss what you think
for a minute and list a few examples

 Let’s talk?

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=EDVBJBfLlAHT2M&tbnid=naHgZu_LhwwUAM:&ved=0CAUQjRw&url=http://psdblast.com/stopwatch-icon-psd&ei=IV_KUsWPIcfIyAG07YDACw&psig=AFQjCNFZrWog4vdCM_-TObjXWD7KJd1l9A&ust=1389080717457367

 Why? Again, software is suppose to change …

 Different releases of a product

 Variations for different platforms
 Hardware and software

 Versions within a development cycle
 Test release with debugging code

 Alpha, beta of final release

 Each time you edit a program

 Q8

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=LXUNZQz40aj8QM&tbnid=KlyIqgXWT5fptM:&ved=0CAUQjRw&url=http://en.wikibooks.org/wiki/Introduction_to_Software_Engineering/Tools/Source_Control&ei=lF3KUvHBMcjhyQGMhoCgBg&psig=AFQjCNGpLhvYBm22bSAtvBwBuTnowCXWZQ&ust=1389080316079162

1.1

You are in the middle
of a project with
three developers
named a, b, and c.

Time

R
eleases

1.1a

1.1b

1.1c

1.2

Time

R
eleases

1.2

First public release
of the hot new
product

1.3

1.0 bugfix

1.4

 Version control tracks multiple versions
◦ Enables old versions to be recovered

◦ Allows multiple versions to exist simultaneously

 Always:
◦ Update before working

◦ Update again before committing

◦ Commit often and with good messages

 Communicate with teammates so you don’t edit
the same code simultaneously
◦ Pair programming ameliorates this issue 

Q9

Check Out

Edit Update

Commit Update

Update and
Commit often!

 Take 15 seconds and think about it

 Turn to neighbor and discuss what
you think for a minute

 Let’s talk?

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&docid=EDVBJBfLlAHT2M&tbnid=naHgZu_LhwwUAM:&ved=0CAUQjRw&url=http://psdblast.com/stopwatch-icon-psd&ei=IV_KUsWPIcfIyAG07YDACw&psig=AFQjCNFZrWog4vdCM_-TObjXWD7KJd1l9A&ust=1389080717457367

 Keep and run old test cases

 Create test cases for new bugs
◦ Like antibodies, to keep a bug from coming back

 Remember:
◦ You can right-click the project in Eclipse to run all

the unit tests

 Go to SVN repository view at bottom of
workbench
◦ Window show view Other SVN SVN

Repositories

 Right click in SVN View, then choose New SVN
Repository Location
◦ http://svn.csse.rose-hulman.edu/repos/csse220-

201420-”your_team_repository”

http://svn.csse.rose-hulman.edu/repos/csse220-201420-your_team_repository
http://svn.csse.rose-hulman.edu/repos/csse220-201420-your_team_repository
http://svn.csse.rose-hulman.edu/repos/csse220-201420-your_team_repository
http://svn.csse.rose-hulman.edu/repos/csse220-201420-your_team_repository
http://svn.csse.rose-hulman.edu/repos/csse220-201420-your_team_repository
http://svn.csse.rose-hulman.edu/repos/csse220-201420-your_team_repository
http://svn.csse.rose-hulman.edu/repos/csse220-201420-your_team_repository

1. A new cell is born on an
empty square if it has
exactly 3 neighbor cells

2. A cell dies of
overcrowding if it is
surrounded by 4 or
more neighbor cells

3. A cells dies of
loneliness if it has just
0 or 1 neighbor cells

x

Cell

Neighbors

Developed by John Conway, 1970

 Work with your partner on the GameOfLife
project
◦ Get help as needed

◦ The TODOs are numbered – do them in the indicated
order.

◦ Follow the practices of pair programming!

 Don’t do any of the work without your partner!

