
Function Objects and the Comparator Interface
Merge Sort

Fork/Join Framework

Checkout ForkJoinIntro project from SVN

 Merge sort recap
 Introduction to function objects, Comparator
 Parallelism with the Fork/Join Framework

 Basic recursive idea:
◦ If list is length 0 or 1, then it’s already sorted
◦ Otherwise:
 Divide list into two halves
 Recursively sort the two halves
 Merge the sorted halves back together

If list is length 0 or 1,
then it’s already sorted

 Otherwise:
◦ Divide list into two halves
◦ Recursively sort the two halves
◦ Merge the sorted halves back together

Merge n/4
items

Merge n/4
items

Merge n/4
items

Merge n/4
items

Merge n items

Merge n/2 items Merge n/2 items

Merge 2
items

Merge 2
items

Merge 2
items

Merge 2
items etc

etc

n items merged

n items merged

n items
merged

n items
merged

etc

Another way of creating
reusable code

 Java libraries provide efficient sorting
algorithms
◦ Arrays.sort(…) and Collections.sort(…)

 But suppose we want to sort by something
other than the “natural order” given by
compareTo()

 Function objects to the rescue!

 Objects defined to just “wrap up” functions so
we can pass them to other (library) code

 For sorting we can create a function object
that implements Comparator

 Let’s try it!

http://java.sun.com/javase/6/docs/api/java/util/Comparator.html

Function objects and recursion
meet multicore computers

Some slides and examples derived from Dan Grossman’s materials at
http://www.cs.washington.edu/homes/djg/teachingMaterials/

 Sequential programming: one thing happens
at a time
◦ No longer the case!

 Parallel programming: multiple things happen
simultaneously

 Major challenges and opportunities
◦ Programming
◦ Algorithms
◦ Data We’ll just scratch the

surface in CSSE 220

 Parallel code is often much harder to write
than sequential

 Free ride from the CPEs
◦ From 1980-2005 performance of same sequential

code doubled every two years
 No one knows how to continue this!
◦ Speed up clock rate?
 Two much heat
 Memory can’t keep up
◦ But the “wires” keep getting smaller, so…
 Put multiple processors on same chip!

 Run multiple totally different programs
◦ Operating system handles this
◦ Uses time-slicing plus multiple cores

 Multiple things at once in one program
◦ We’ll play with this today!

 Parallelism: Use more resources for a faster
answer

 Concurrency: Correctly and efficiently allow
simultaneous access to data

 CS1 idea: Writing a program is like writing a
recipe for a cook

 Parallelism: slicing lots of potatoes

 Concurrency: sharing stove burners

 Example: Sum elements of a large array
 Use divide-and-conquer!
◦ Parallelism for the recursive calls

+ + + + + + + +
+ + + +

+ +
+

 Specifically for recursive, divide-and-
conquer parallelism
◦ Is in Java 7 standard libraries, but available in Java

6 as a downloaded .jar file

 Fork: splitting off some code that can run in
parallel with the original code
◦ Like handing a potato to a helper

 Join: waiting for some forked code to finish
◦ Like waiting for the potato slices from the helper

 Set a sequential threshold
◦ A size below which we just “slice ‘em ourselves”

 Library needs to “warm up”
◦ Java Virtual Machine optimizes as it runs

 Wait until your computer has more
processors 

 Here there be dragons!
◦ Memory-hierarchy issues
◦ Race conditions
◦ We’re ignoring lots of gory details!

 Find a partner for HW24 (today’s homework)
 You’ll:
◦ Write some code
◦ Run some experiments
◦ Write a lab report

Follow the written homework
instructions carefully. There’s much

more independent learning here
than we’ve been doing so far.

	CSSE 220 Day 24
	Questions
	Today’s Plan
	Merge Sort Recap
	Analyzing�Merge Sort
	Function Objects
	A Sort of a Different Order
	Function Objects
	Intro. to Fork-Join Parallelism
	Changing a Major Assumption
	Simplified View of History
	What do we do with all of them?
	Parallelism vs. Concurrency
	An analogy
	Parallelism Idea
	Fork-Join Framework
	Getting good results in practice
	Fork-Join Lab

