
Function Objects and the Comparator Interface 
Merge Sort 

Fork/Join Framework 

Checkout ForkJoinIntro project from SVN 





 Merge sort recap 
 Introduction to function objects, Comparator 
 Parallelism with the Fork/Join Framework 



 Basic recursive idea: 
◦ If list is length 0 or 1, then it’s already sorted 
◦ Otherwise: 
 Divide list into two halves 
 Recursively sort the two halves 
 Merge the sorted halves back together 
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Another way of creating 
reusable code 



 Java libraries provide efficient sorting 
algorithms 
◦ Arrays.sort(…) and Collections.sort(…) 
 

 But suppose we want to sort by something 
other than the “natural order” given by 
compareTo() 
 

 Function objects to the rescue! 



 Objects defined to just “wrap up” functions so 
we can pass them to other (library) code 
 

 For sorting we can create a function object 
that implements Comparator 
 

 Let’s try it! 

http://java.sun.com/javase/6/docs/api/java/util/Comparator.html


Function objects and recursion 
meet multicore computers 

Some slides and examples derived from Dan Grossman’s materials at 
http://www.cs.washington.edu/homes/djg/teachingMaterials/ 



 Sequential programming: one thing happens 
at a time 
◦ No longer the case! 

 Parallel programming: multiple things happen 
simultaneously 
 

 Major challenges and opportunities 
◦ Programming 
◦ Algorithms 
◦ Data We’ll just scratch the 

surface in CSSE 220 



 Parallel code is often much harder to write 
than sequential 

 Free ride from the CPEs 
◦ From 1980-2005 performance of same sequential 

code doubled every two years 
 No one knows how to continue this! 
◦ Speed up clock rate? 
 Two much heat 
 Memory can’t keep up 
◦ But the “wires” keep getting smaller, so… 
 Put multiple processors on same chip! 

 



 Run multiple totally different programs 
◦ Operating system handles this 
◦ Uses time-slicing plus multiple cores 

 
 Multiple things at once in one program 
◦ We’ll play with this today! 



 Parallelism: Use more resources for a faster 
answer 

 Concurrency: Correctly and efficiently allow 
simultaneous access to data 



 CS1 idea: Writing a program is like writing a 
recipe for a cook 
 

 Parallelism: slicing lots of potatoes 
 

 Concurrency: sharing stove burners 



 Example: Sum elements of a large array 
 Use divide-and-conquer! 
◦ Parallelism for the recursive calls 
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 Specifically for recursive, divide-and-
conquer parallelism 
◦ Is in Java 7 standard libraries, but available in Java 

6 as a downloaded .jar file 
 

 Fork: splitting off some code that can run in 
parallel with the original code 
◦ Like handing a potato to a helper 

 
 Join: waiting for some forked code to finish 
◦ Like waiting for the potato slices from the helper 



 Set a sequential threshold 
◦ A size below which we just “slice ‘em ourselves” 

 Library needs to “warm up” 
◦ Java Virtual Machine optimizes as it runs 

 Wait until your computer has more 
processors  

 
 Here there be dragons! 
◦ Memory-hierarchy issues 
◦ Race conditions 
◦ We’re ignoring lots of gory details! 



 Find a partner for HW24 (today’s homework) 
 You’ll: 
◦ Write some code 
◦ Run some experiments 
◦ Write a lab report 

 

Follow the written homework 
instructions carefully.  There’s much 

more independent learning here 
than we’ve been doing so far. 
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