
Data-structure-palooza
Exam Review

Generics

Checkout DataStructures and
Generics2 from SVN

Understanding the
engineering trade-offs when
storing data

 Boil down data types (e.g., lists) to their
essential operations

 Choosing a data structure for a project then
becomes:
◦ Identify the operations needed
◦ Identify the abstract data type that most efficiently

supports those operations

 Goal: that you understand several basic
abstract data types and when to use them

 Array List
 Linked List
 Stack
 Queue
 Set
 Map

Implementations for all of
these are provided by the Java
Collections Framework in the
java.util package.

Operations
Provided

Array List
Efficiency

Linked List
Efficiency

Random access O(1) O(n)
Add/remove item O(n) O(1)

 A last-in, first-out (LIFO) data structure
 Real-world stacks
◦ Plate dispensers in the cafeteria
◦ Pancakes!

 Some uses:
◦ Tracking paths through a maze
◦ Providing “unlimited undo” in an application

Operations
Provided

Efficiency

Push item O(1)
Pop item O(1)

Implemented by
Stack, LinkedList,
and ArrayDeque in
Java

Q1

 A first-in, first-out (FIFO) data structure
 Real-world queues
◦ Waiting line at the BMV
◦ Character on Star Trek TNG

 Some uses:
◦ Scheduling access to shared resource (e.g., printer)

Operations Provided Efficiency
Add (enqueue, offer) item O(1)
Remove (dequeue, poll) item O(1)

Implemented by
LinkedList and
ArrayDeque in
Java

Q2

Binary Tree Hash Table

 Use if you need the
items to be sorted

 Log(n) height of tree

 Uses “hash code”

 O(1) to lookup, add or
remove

sam joe ty,
ali

…

 Collections without duplicates
 Real-world sets
◦ Students
◦ Collectibles

 Some uses:
◦ Quickly checking if an item is in a collection

 Sorted? Depends on implementation!

Operations HashSet TreeSet
Add/remove item O(1) O(log n)
Contains? O(1) O(log n)

Can hog space Sorts items! Q3

 Associate keys with values
 Real-world “maps”
◦ Dictionary
◦ Phone book

 Some uses:
◦ Associating student ID with transcript
◦ Associating name with high scores

Operations HashMap TreeMap
Insert key-value pair O(1) O(lg n)
Look up value for key O(1) O(lg n)

Can hog space Sorts items by key! Q4

Binary Tree Hash Table

 Use if you need the
items to be sorted

 Log(n) height of tree

 Uses “hash code”

 O(1) to lookup, add or
remove

sam joe ty,
ali

…

Q5 - 8

Another way to make code
more re-useful

 Java Collections just stored Objects
◦ This was better than creating different collection

classes for each kind of object to be stored
◦ Could put anything in them because of

polymorphism

 Used class casts to get the types right:
◦ ArrayList songs = new ArrayList();
songs.add(new Song("Dawn Chorus", "Modern English"));
…
Song s = (Song) songs.get(1);

◦ songs.add(new Artist("A Flock of Seagulls"));
Song t = (Song) songs.get(2);

Q9 run-time error

 Can define collections and other classes
using type parameters
◦ ArrayList<Song> songs = new ArrayList<Song>();
songs.add(new Song("Dawn Chorus", "Modern English"));
…
Song s = songs.get(1); // no cast needed

◦ songs.add(new Artist("A Flock of Seagulls"));

 Lets us use these classes:
◦ in a variety of circumstances
◦ with strong type checking
◦ without having to write lots of casts

compile-time
error

Q10

 Create a doubly linked list

 Include min() and max() methods

 Use polymorphism rather than null checks for
the start and end of the list

 Include fromArray() factory method

Q11-Q13

 Type parameters:
◦ class DLList<E>

 Bounds:
◦ class DLList<E extends Comparable>
◦ class DLList<E extends Comparable<E>>
◦ class DLList<E extends Comparable<? super E>>

 Generic methods:
◦ public static <T> void shuffle(T[] array)

 http://docs.oracle.com/javase/tutorial/java/generics/index.html

 Q14-15, turn in

 Business casual
 Think of it as an internal company

presentation, not a presentation to the public
 Five-minute presentation, two minutes for

questions, two minutes for transition to next
team

 Order of teams will be randomly determined

 Do a quick demo of your project
◦ Show off any "extra" features or things that work

well
 What part was your team's biggest challenge?
 Show one or two interesting code snippets
◦ Highlight your good OO design

 Ask for questions
◦ And ask questions of other teams

 Before Wednesday, practice getting your
computer working with a New Olin projector
◦ Remember maximum resolution

 Exam is Wednesday, May 22 at 1:00 pm
 Same general format as previous exams
 Same resources:
◦ Paper part: 1 page of notes
◦ Computer part: Open book, notes, computer;

course web pages and ANGEL pages, JDK
documentation, programs in YOUR CSSE220
repositories

 Comprehensive, but focused on Ch 9-18
 May include problems that make sure you

understand your team's project code

oSimple recursion
oMutual recursion
oTime-space trade-offs
oBasic search algorithms

oBinary search, linear
search

oEfficiency, best/worst
case inputs

oBig-oh notation,
estimating big-oh
behavior of code

oFile I/O, exception
handling

oFunction objects
o Linked-list

implementation
oBasic data structure use

and efficiency
oArrayList, LinkedList,

Stack, Queue,
HashSet, TreeSet,
HashMap, TreeMap

oMultithreading (not locks)

 Interfaces, polymorphism, inheritance and abstract
classes

 Exception handling (try, catch, finally, throw, throws)
 OO design and UML class diagrams
 Basic sorting algorithm
 Insertion sort
 Selection sort
 Merge sort
 Big-oh analysis of each

 Generic programming
 Event handling, layout managers, exploring the Swing

documentation
 Your LodeRunner implementation

Your chance to improve
instruction, courses, and
curricula.

	CSSE 220 Day 17
	Questions
	Data Structures
	Abstract Data Types
	Common ADTs
	Array Lists and Linked Lists
	Stacks
	Queues
	When using a set or map, you choose the implementation:
	Sets
	Maps
	When using a set or map, you choose the implementation:
	Generic Types
	Before Generics…
	With Generics…
	Example
	Generics Recap
	Project demo/presentation Wednesday
	Project demo/presentation Wednesday
	Final Exam
	Final Exam – possible topics
	Final Exam – possible topics
	Course Evaluations
	Slide Number 24

