
Searching
Function Objects and the Comparator Interface

Merge Sort
Fork/Join Framework

Checkout SortingAndSearching and
ForkJoinIntro projects from SVN

 Basic idea:
◦ Think of the list as having a sorted part (at the

beginning) and an unsorted part (the rest)

◦ Get the first value in the

unsorted part
◦ Insert it into the correct

location in the sorted part,
moving larger values up to
make room

Repeat until
unsorted
part is
empty

 Profile insertion sort

 Analyze insertion sort assuming the inner
while loop runs the maximum number of
times

 What input causes the worst case behavior?
The best case?

 Does the input affect selection sort?

Ask for help if you’re stuck! Q1-Q10

 Consider:
◦ Find Royal Mandarin Express’s number in the phone

book
◦ Find who has the number 208-0521

 Is one task harder than the other? Why?

 For searching unsorted data, what’s the worst

case number of comparisons we would have
to make?

 A divide and conquer strategy

 Basic idea:
◦ Divide the list in half
◦ Decide whether result should be in upper or lower

half
◦ Recursively search that half

 What’s the best case?

 What’s the worst case?

 We use recurrence relations to analyze
recursive algorithms:
◦ Let T(n) count the number of comparisons to search

an array of size n
◦ Examine code to find recursive formula of T(n)
◦ Solve for n

Q11

 Basic recursive idea:
◦ If list is length 0 or 1, then it’s already sorted
◦ Otherwise:
 Divide list into two halves
 Recursively sort the two halves
 Merge the sorted halves back together

If list is length 0 or 1,
then it’s already sorted

 Otherwise:
◦ Divide list into two halves
◦ Recursively sort the two halves
◦ Merge the sorted halves back together

Merge n/4
items

Merge n/4
items

Merge n/4
items

Merge n/4
items

Merge n items

Merge n/2 items Merge n/2 items

Merge 2
items

Merge 2
items

Merge 2
items

Merge 2
items etc

etc

n items merged

n items merged

n items
merged

n items
merged

etc

Another way of creating
reusable code

 Java libraries provide efficient sorting
algorithms
◦ Arrays.sort(…) and Collections.sort(…)

 But suppose we want to sort by something
other than the “natural order” given by
compareTo()

 Function objects to the rescue!

 Objects defined to just “wrap up” functions so
we can pass them to other (library) code

 For sorting we can create a function object
that implements Comparator

 Let’s try it!

http://java.sun.com/javase/6/docs/api/java/util/Comparator.html

Function objects and recursion
meet multicore computers

Some slides and examples derived from Dan Grossman’s materials at
http://www.cs.washington.edu/homes/djg/teachingMaterials/

 Sequential programming: one thing happens
at a time
◦ No longer the case!

 Parallel programming: multiple things happen
simultaneously

 Major challenges and opportunities
◦ Programming
◦ Algorithms
◦ Data We’ll just scratch the

surface in CSSE 220

 Parallel code is often much harder to write
than sequential

 Free ride from the CPEs
◦ From 1980-2005 performance of same sequential

code doubled every two years
 No one knows how to continue this!
◦ Speed up clock rate?
 Two much heat
 Memory can’t keep up
◦ But the “wires” keep getting smaller, so…
 Put multiple processors on same chip!

 Run multiple totally different programs
◦ Operating system handles this
◦ Uses time-slicing plus multiple cores

 Multiple things at once in one program
◦ We’ll play with this today!

 Parallelism: Use more resources for a faster
answer

 Concurrency: Correctly and efficiently allow
simultaneous access to data

 CS1 idea: Writing a program is like writing a
recipe for a cook

 Parallelism: slicing lots of potatoes

 Concurrency: sharing stove burners

 Example: Sum elements of a large array
 Use divide-and-conquer!
◦ Parallelism for the recursive calls

+ + + + + + + +
+ + + +

+ +
+

 Specifically for recursive, divide-and-
conquer parallelism
◦ Is in Java 7 standard libraries, but available in Java

6 as a downloaded .jar file

 Fork: splitting off some code that can run in
parallel with the original code
◦ Like handing a potato to a helper

 Join: waiting for some forked code to finish
◦ Like waiting for the potato slices from the helper

 Set a sequential threshold
◦ A size below which we just “slice ‘em ourselves”

 Library needs to “warm up”
◦ Java Virtual Machine optimizes as it runs

 Wait until your computer has more
processors 

 Here there be dragons!
◦ Memory-hierarchy issues
◦ Race conditions
◦ We’re ignoring lots of gory details!

 Find a partner for HW15b (today’s homework)
 You’ll:
◦ Write some code
◦ Run some experiments
◦ Write a lab report

Follow the written homework
instructions carefully. There’s much

more independent learning here
than we’ve been doing so far.

Review Homework.

Q12-Q13

	CSSE 220 Day 15
	Questions?
	Insertion Sort
	Insertion Sort Exercise, Q1-10
	Searching
	Binary Search of Sorted Data
	Analyzing Binary Search
	Merge Sort
	Analyzing�Merge Sort
	Function Objects
	A Sort of a Different Order
	Function Objects
	Intro. to Fork-Join Parallelism
	Changing a Major Assumption
	Simplified View of History
	What do we do with all of them?
	Parallelism vs. Concurrency
	An analogy
	Parallelism Idea
	Fork-Join Framework
	Getting good results in practice
	Fork-Join Lab
	Work Time

