
Object-Oriented Design
File I/O

Exceptions

Checkout the FilesAndExceptions project

Please complete the Project Team Preference Survey

 LayoutManagers for Java GUIs
 BallWorlds work time

 Classes usually are related to their
collaborators

 Draw a UML class diagram showing how
 Common relationships:
◦ Inheritance: only when subclass is a special case
◦ Aggregation: when one class has a field that

references another class
◦ Dependency: like aggregation but transient, usually

for method parameters, “has a” temporarily
◦ Association: any other relationship, can label the

arrow, e.g., constructs

NEW!

Q1

Draw UML class diagrams based on
your CRC cards

Initially just show classes
(not insides of each)

Add insides for two classes

When JFrame’s and JPanel’s
defaults just don’t cut it.

 Answer: 5
 We use the two-argument version of add:
 JPanel p = new JPanel();
frame.add(p, BorderLayout.SOUTH);

 JFrame’s default LayoutManager
is a BorderLayout

 LayoutManager instances
tell the Java library how to
arrange components

 BorderLayout uses up to five
components

Q2

 Answer: arbitrarily many
 Additional components are added in

a line

 JPanel’s default LayoutManager
is a FlowLayout

 We can set the layout manager of a JPanel
manually if we don’t like the default:
 JPanel panel = new JPanel();

panel.setLayout(new GridLayout(4,3));
panel.add(new JButton("1"));
panel.add(new JButton("2"));
panel.add(new JButton("3"));
panel.add(new JButton("4"));
// ...
panel.add(new JButton("0"));
panel.add(new JButton("#"));
frame.add(panel);

 A LayoutManager determines how components are
laid out within a container
• BorderLayout. When adding a component, you specify

center, north, south, east, or west for its location. (Default
for a JFrame.)

• FlowLayout: Components are placed left to right. When
a row is filled, start a new one. (Default for a JPanel.)

• GridLayout. All components same size, placed into a 2D
grid.

• Many others are available, including BoxLayout,
CardLayout, GridBagLayout, GroupLayout

• If you use null for the LayoutManager, then you must
specify every location using coordinates
 More control, but it doesn’t resize automatically

Q3

 Chapter 18 of Big Java

 Swing Tutorial
◦ http://docs.oracle.com/javase/tutorial/ui/index.ht

ml
◦ Also linked from schedule

http://docs.oracle.com/javase/tutorial/ui/index.html
http://docs.oracle.com/javase/tutorial/ui/index.html

Reading & writing files
When the unexpected happens

 Look at GameOfLifeWithIO
◦ GameOfLife constructor has 2 listeners, two local

anonymous class
◦ ButtonPanel constructor has 3 listeners which are

local anonymous classes

 Feel free to use as examples for your project

 Input: File and Scanner

 Output: PrintWriter and println

 Be kind to your OS: close() all files

 Letting users choose: JFileChooser and

File

 Expect the unexpected: Exception handling

 Refer to examples when you need to…

Q4-Q6

 Used to signal that something went wrong:
◦ throw new EOFException(“Missing column”);

 Can be caught by exception handler
◦ Recovers from error
◦ Or exits gracefully

Q7

 Java has two sorts of exceptions

 Checked exceptions: compiler checks that
calling code isn’t ignoring the problem
◦ Used for expected problems

 Unchecked exceptions: compiler lets us
ignore these if we want
◦ Used for fatal or avoidable problems
◦ Are subclasses of RunTimeException or Error

Q8-Q9

 Dealing with checked exceptions

◦ Can propagate the exception
 Just declare that our method will pass any exceptions

along
 public void loadGameState() throws IOException
 Used when our code isn’t able to rectify the problem

◦ Can handle the exception
 Used when our code can rectify the problem

Q10

 Use try-catch statement:
◦ try {
 // potentially “exceptional” code
} catch (ExceptionType var) {
 // handle exception
}

 Related, try-finally for clean up:
◦ try {
 // code that requires “clean up”
} finally {
 // runs even if exception occurred
}

Can repeat this
part for as many
different
exception types as
you need.

Demonstrate the program

 A team assignment
◦ So some division of labor is appropriate (indeed,

necessary)
 A learning experience, so:
◦ Rule 1: every team member must participate in

every major activity.
 E.g., you are not allowed to have someone do graphics

but no coding,
◦ Rule 2: Everything that you submit for this project

should be understood by all team members.
 Not necessarily all the details, but all the basic ideas

 Read the specification if you haven't done so

 Start working on your milestone 0 due next
class
◦ Try to get it done in class today so you can:
 Get some feedback in class before it’s graded.

 There are milestones due most class days:
 For next class:
◦ User stories
◦ CRC cards
◦ UML class diagram
◦ See the project description for details

◦ Suggestion:
 Plan to implement a considerable amount of

functionality in Cycle 1
 It is the longest cycle that you will have

BallWorlds

Q11-Q12

	CSSE 220 Day 12
	Questions?
	Today’s Plan
	Describe the Relationships
	Summary of �UML Class Diagram Arrows
	Object-Oriented Design
	Some Notes on�Layout Managers
	Recall: How many components can a JFrame show by default?
	Recall: How many components can a JPanel show by default?
	Setting the Layout Manager
	Lots of Layout Managers
	Additional Resources on�Layout Managers
	Files and Exceptions
	Review of Anonymous Classes
	File I/O: Key Pieces
	Exceptions
	A Checkered Past
	A Tale of Two Choices
	Handling Exceptions
	LoadRunner Assignment
	Teaming
	Work time now
	Plan, then do
	Work Time

