
Inheritance recap
Object: the superest class of all

Inheritance and text in GUIs

Check out Inheritance2 from SVN

 On ANGEL, under Lessons  Assignments
 Preferences help me to choose teams; I also consider your

performance so far in the course
 Complete the survey by Monday, April 22, 2013, noon
 Most teams will have 3 students
 Are you willing to be on a team of 2?
 List up to 5 students you'd like to work with, highest

preference first.
◦ You may not get your first choices, so it's a good idea to

list more than two
◦ Best to choose partners whose commitment level and

current Java coding/debugging ability is similar to yours
 List up to 2 students you'd prefer NOT to work with
◦ I'll do my best to honor this, but I must find a team for

everyone.

The superest class in Java

 Every class in Java inherits from Object

◦ Directly and explicitly:
 public class String extends Object {…}

◦ Directly and implicitly:
 class BankAccount {…}

◦ Indirectly:
 class SavingsAccount extends BankAccount {…}

Q1

 String toString()

 boolean equals(Object otherObject)

 Class getClass()

 Object clone()

 …

Often overridden

Sometimes useful

Often dangerous!

Q2

 Return a concise, human-readable summary
of the object state

 Very useful because it’s called automatically:
◦ During string concatenation
◦ For printing
◦ In the debugger

 getClass().getName() comes in handy

here…

Q3

 Should return true when comparing two
objects of same type with same “meaning”

 How?
◦ Must check types—use instanceof
◦ Must compare state—use cast

 Example…

Q4

Review and Practice

 A subclass instance is a superclass instance
◦ Polymorphism still works!
◦ BankAccount ba = new SavingsAccount();
ba.deposit(100);

 But not the other way around!
◦ SavingsAccount sa = new BankAccount();
sa.addInterest();

 Why not? BOOM!

 Can use:
◦ public void transfer(double amt, BankAccount o){
 this.withdraw(amount);
 o.deposit(amount);
}
in BankAccount

 To transfer between different accounts:
◦ SavingsAccount sa = …;
◦ CheckingAccount ca = …;
◦ sa.transfer(100, ca);

 If B extends or implements A, we can write
 A x = new B();

Declared type tells which
methods x can access.
Compile-time error if try to
use method not in A.

The actual type tells which
class’ version of the
method to use.

 Can cast to recover methods from B:
 ((B)x).foo()

 Now we can access all of
B’s methods too.

If x isn’t an instance of
B, it gives a run-time
error (class cast
exception)

Q5

Analysis

Design

Implementation

Testing

Deployment

Maintenance

Software
Development

 Standardized approaches intended to:
◦ Reduce costs
◦ Increase predictability of results

 Examples:
◦ Waterfall model
◦ Spiral model
◦ “Rational Unified Process”

 Do each stage to completion
 Then do the next stage

Pipe dream model?

Analysis

Design

Implementation

Testing

Deployment

 Repeat phases in a cycle
 Produce a prototype at end of each cycle
 Get early feedback, incorporate changes

 Schedule overruns
 Scope creep

Deployment

Prototype

 Like the spiral model with very short cycles

 Pioneered by Kent Beck

 One of several “agile” methodologies, focused
on building high quality software quickly

 Rather than focus on rigid process, XP
espouses 12 key practices…

 Realistic planning

 Small releases

 Shared metaphors

 Simplicity

 Testing

 Refactoring

 Pair programming

 Collective ownership

 Continuous integration

 40-hour week

 On-site customer

 Coding standards
When you see

opportunity to make
code better, do it

Use descriptive
names Q6

A practical technique

 We won’t use full-scale, formal
methodologies
◦ Those are in later SE courses

 We will practice a common object-oriented
design technique using CRC Cards

 Like any design technique,
the key to success is practice

1. Discover classes based on
requirements

2. Determine responsibilities of
each class

3. Describe relationships between
classes

Q7

 Brainstorm a list of possible classes
◦ Anything that might work
◦ No squashing

 Prompts:
◦ Look for nouns
◦ Multiple objects are often created from each class
 So look for plural concepts
◦ Consider how much detail a concept requires:
 A lot? Probably a class
 Not much? Perhaps a primitive type

 Don’t expect to find them all  add as needed

Tired of hearing this yet?

 Look for verbs in the requirements to identify
responsibilities of your system

 Which class handles the responsibility?

 Can use CRC Cards to discover this:
◦ Classes
◦ Responsibilities
◦ Collaborators

 Use one index card per class
Class name

Collaborators Responsibilities
Q8

1. Pick a responsibility of the program
2. Pick a class to carry out that responsibility
◦ Add that responsibility to the class’s card

3. Can that class carry out the responsibility by
itself?

◦ Yes  Return to step 1
◦ No 
 Decide which classes should help
 List them as collaborators on the first card
 `

 Spread the cards out on a table
◦ Or sticky notes on a whiteboard instead of cards

 Use a “token” to keep your place
◦ A quarter or a magnet

 Focus on high-level responsibilities
◦ Some say < 3 per card

 Keep it informal
◦ Rewrite cards if they get too sloppy
◦ Tear up mistakes
◦ Shuffle cards around to keep “friends” together

• Meet your partner (see link in
part 3 of spec)

• Carefully read the
requirements and provided
code

• Ask questions (instructor and
TAs).

Pulsar, Mover, etc.

	CSSE 220 Day 11
	Questions?
	Project Team Preference Survey
	I, Object
	Object
	Object Provides Several Methods
	Overriding toString()
	Overriding equals(Object o)
	Polymorphism
	Polymorphism and Subclasses
	Another Example
	Summary
	Software�Development�Methods
	Software Life Cycle
	Formal Development Processes
	Waterfall Model
	Spiral Model
	Extreme Programming—XP
	The XP Practices
	Object-Oriented Design
	Object-Oriented Design
	Key Steps in Our Design Process
	Discover Classes�Based on Requirements
	Discover Classes�Based on Requirements
	Determine Responsibilities
	CRC Cards
	CRC Card Technique
	CRC Card Tips
	BallWorlds
	BallWorlds Worktime

