
Inheritance recap 
Object: the superest class of all 

Inheritance and text in GUIs 

Check out Inheritance2 from SVN 





 On ANGEL, under Lessons  Assignments 
 Preferences help me to choose teams; I also consider your 

performance so far in the course 
 Complete the survey by Monday, April 22, 2013, noon 
 Most teams will have 3 students 
 Are you willing to be on a team of 2? 
 List up to 5 students you'd like to work with, highest 

preference first. 
◦ You may not get your first choices, so it's a good idea to 

list more than two 
◦ Best to choose partners whose commitment level and 

current Java coding/debugging ability is similar to yours 
 List up to 2 students you'd prefer NOT to work with 
◦ I'll do my best to honor this, but I must find a team for 

everyone.  
 



The superest class in Java 



 Every class in Java inherits from Object 
 
◦ Directly and explicitly: 
 public class String extends Object {…} 
 
◦ Directly and implicitly: 
 class BankAccount {…} 
 
◦ Indirectly: 
 class SavingsAccount extends BankAccount {…} 

Q1 



 String toString() 
 

 boolean equals(Object otherObject) 
 

 Class getClass() 
 

 Object clone() 
 

 … 

Often overridden 

Sometimes useful 

Often dangerous! 

Q2 



 Return a concise, human-readable summary 
of the object state 
 

 Very useful because it’s called automatically: 
◦ During string concatenation 
◦ For printing 
◦ In the debugger 

 
 getClass().getName() comes in handy 

here… 

Q3 



 Should return true when comparing two 
objects of same type with same “meaning” 
 

 How? 
◦ Must check types—use instanceof 
◦ Must compare state—use cast 

 
 Example… 

Q4 



Review and Practice 



 A subclass instance is a superclass instance 
◦ Polymorphism still works! 
◦ BankAccount ba = new SavingsAccount(); 
ba.deposit(100); 
 

 But not the other way around! 
◦ SavingsAccount sa = new BankAccount(); 
sa.addInterest(); 
 

 Why not? BOOM! 



 Can use: 
◦ public void transfer(double amt, BankAccount o){ 
    this.withdraw(amount); 
    o.deposit(amount); 
} 
in BankAccount 

 To transfer between different accounts: 
◦ SavingsAccount sa = …; 
◦ CheckingAccount ca = …; 
◦ sa.transfer(100, ca); 



 If B extends or implements A, we can write  
    A x = new B();  

 
Declared type tells which 
methods x can access. 
Compile-time error  if try to 
use method not in A. 

The actual type tells which 
class’ version of the 
method to use. 

 Can cast to recover methods from B: 
    ((B)x).foo() 

 Now we can access all of 
B’s methods too. 

If x isn’t an instance of 
B, it gives a run-time 
error (class cast 
exception)  

Q5 





Analysis 

Design 

Implementation 

Testing 

Deployment 

Maintenance 

Software 
Development 



 Standardized approaches intended to: 
◦ Reduce costs 
◦ Increase predictability of results 

 
 Examples: 
◦ Waterfall model 
◦ Spiral model 
◦ “Rational Unified Process” 



 Do each stage to completion 
 Then do the next stage 

Pipe dream model? 

Analysis 

Design 

Implementation 

Testing 

Deployment 



 Repeat phases in a cycle 
 Produce a prototype at end of each cycle 
 Get early feedback, incorporate changes 

 Schedule overruns 
 Scope creep 

Deployment 

Prototype 



 Like the spiral model with very short cycles 
 

 Pioneered by Kent Beck 
 

 One of several “agile” methodologies, focused 
on building high quality software quickly 
 

 Rather than focus on rigid process, XP 
espouses 12 key practices… 



 Realistic planning 

 Small releases 

 Shared metaphors 

 Simplicity 

 Testing 

 Refactoring 

 Pair programming 

 Collective ownership 

 Continuous integration 

 40-hour week 

 On-site customer 

 Coding standards 
When you see 

opportunity to make 
code better, do it 

Use descriptive 
names Q6 



A practical technique 



 We won’t use full-scale, formal 
methodologies 
◦ Those are in later SE courses 

 We will practice a common object-oriented 
design technique using CRC Cards 

 Like any design technique,  
the key to success is practice 
 



1. Discover classes based on 
requirements 
 

2. Determine responsibilities of 
each class 
 

3. Describe relationships between 
classes 

Q7 



 Brainstorm a list of possible classes 
◦ Anything that might work 
◦ No squashing 



 Prompts: 
◦ Look for nouns 
◦ Multiple objects are often created from each class 
 So look for plural concepts 
◦ Consider how much detail a concept requires: 
 A lot?  Probably a class 
 Not much?  Perhaps a primitive type 
 

 Don’t expect to find them all  add as needed 

Tired of hearing this yet? 



 Look for verbs in the requirements to identify 
responsibilities of your system 
 

 Which class handles the responsibility? 
 

 Can use CRC Cards to discover this: 
◦ Classes 
◦ Responsibilities 
◦ Collaborators 



 Use one index card per class 
Class name 

Collaborators Responsibilities 
Q8 



1. Pick a responsibility of the program 
2. Pick a class to carry out that responsibility 
◦ Add that responsibility to the class’s card 

3. Can that class carry out the responsibility by 
itself? 

◦ Yes  Return to step 1 
◦ No  
 Decide which classes should help 
 List them as collaborators on the first card 
 ` 



 Spread the cards out on a table 
◦ Or sticky notes on a whiteboard instead of cards 

 Use a “token” to keep your place 
◦ A quarter or a magnet 

 Focus on high-level responsibilities 
◦ Some say < 3 per card 

 Keep it informal 
◦ Rewrite cards if they get too sloppy 
◦ Tear up mistakes 
◦ Shuffle cards around to keep “friends” together 



• Meet your partner (see link in 
part 3 of spec) 

• Carefully read the 
requirements and provided 
code 

• Ask questions (instructor and 
TAs). 



Pulsar, Mover, etc. 
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