
Event Based Programming

Check out EventBasedProgramming from SVN

Exam 2 is less than 2 weeks away!
First day of 8th week

Layout in Java windows

 JFrame’s add(Component c) method
◦ Adds a new component to be drawn
◦ Throws out the old one!

 JFrame also has method
add(Component c, Object constraint)
◦ Typical constraints:
 BorderLayout.NORTH, BorderLayout.CENTER
◦ Can add one thing to each “direction”, plus center

 JPanel is a container (a thing!) that can display
multiple components

Q1-2

So, how do we do this?

 To update graphics:
◦ We tell Java library that we need to be redrawn:
 space.repaint()
◦ Library calls paintComponent() when it’s ready

 Don’t call paintComponent() yourself! It’s

just there for Java’s call back.

Q3

public interface MouseListener {
 public void mouseClicked(MouseEvent e);
 public void mouseEntered(MouseEvent e);
 public void mouseExited(MouseEvent e);
 public void mousePressed(MouseEvent e);
 public void mouseReleased(MouseEvent e);
}

Q4

 Sometimes a new class is a
special case of the concept
represented by another

 Can “borrow” from an
existing class, changing just
what we need

 The new class inherits from
the existing one:
◦ all methods
◦ all instance fields

Q5

 class SavingsAccount extends BankAccount
◦ adds interest earning, keeps other traits

 class Employee extends Person
◦ adds pay information and methods, keeps other

traits

 class Manager extends Employee
◦ adds information about employees managed,

changes the pay mechanism, keeps other traits

 class SavingsAccount extends BankAccount {
 // added fields
 // added methods
}

 Say “SavingsAccount is a BankAccount”

 Superclass: BankAccount

 Subclass: SavingsAccount

Q6

The “superest”
class in Java

Still means
“is a”

Solid line
shows

inheritance

Q7

 class ClickHandler implements MouseListener

◦ ClickHandler promises to implement all the

methods of MouseListener

 class CheckingAccount extends BankAccount

◦ CheckingAccount inherits (or overrides) all the

methods of BankAccount

For client code
reuse

For
implementation

code reuse

 Inherit methods unchanged

 Override methods
◦ Declare a new method with same signature to use

instead of superclass method

 Add entirely new methods not in superclass

Q8

 ALWAYS inherit all fields unchanged

 Can add entirely new fields not in superclass

DANGER! Don’t use
the same name as a

superclass field!

Q9

 Calling superclass method:
◦ super.methodName(args);

 Calling superclass constructor:
◦ super(args);

Must be the first
line of the subclass

constructor

Q10

 A subclass instance is a superclass instance
◦ Polymorphism still works!
◦ BankAccount ba = new CheckingAccount();
ba.deposit(100);

 But not the other way around!
◦ CheckingAccount ca = new BankAccount();
ca.deductFees();

 Why not? BOOM!

For client code reuse

Q11

 Can use:
◦ public void transfer(double amt, BankAccount o){
 this.withdraw(amount);
 o.deposit(amount);
}
in BankAccount

 To transfer between different accounts:
◦ SavingsAccount sa = …;
◦ CheckingAccount ca = …;
◦ sa.transfer(100, ca);

 Hybrid of superclasses and interfaces
◦ Like regular superclasses:
 Provide implementation of some methods
◦ Like interfaces
 Just provide signatures and docs of other methods
 Can’t be instantiated

 Example:
◦ public abstract class BankAccount {
 /** documentation here */
 public abstract void deductFees();
 …
}

Elided methods as before

Also look at
the code in
the shapes
package,
especially
ShapesDemo
(during or
after class)

 Review
◦ public—any code can see it
◦ private—only the class itself can see it

 Others
◦ default (i.e., no modifier)—only code

in the same package can see it
 good choice for classes
◦ protected—like default, but

subclasses also have access
 sometimes useful for helper methods

Bad
for

fields!

Q12

Demo
UML Design Questions

Linear Lights Out

It's a solo project, but feel free
to talk with others as you do
it.

And to ask
instructor/assistants for help

Q13-Q14

BigRational from HW 10
BoardGames from HW 10

	CSSE 220 Day 10
	Questions?
	Time to Make�the Buttons
	Key Layout Ideas
	Slide Number 6
	Repaint (and thin no more)
	Mouse Listeners
	Inheritance
	Examples
	Notation and Terminology
	Inheritance in UML
	Interfaces vs. Inheritance
	Inheritance Run Amok?
	With Methods, Subclasses can:
	With Fields, Subclasses:
	Super Calls
	Polymorphism and Subclasses
	Another Example
	Abstract Classes
	Access Modifiers
	BallWorlds Introduction
	Work Time
	Work Time

