
Arrays, ArrayLists,
Wrapper Classes, Auto-boxing,

Enhanced for loop

Check out ArraysAndLists and TwoDArrays
from SVN

 Over chapters 1-7
 You'll have a chance to ask questions about

anything in next Monday's class.
 See Session 10 on the Schedule Page

schedule for Exam 1 samples

Part 1 – Written. You may bring an 8.5 x 11 inch
sheet of paper (double-sided, hand-written or

printed) with whatever you want on it.
Part 2 – Computer. Code that you must write and

debug. You can use your textbook, the Java API
documents, and any programs that you have written

or we have given you. Q1

 Problem:
◦ ArrayList’s only hold objects
◦ Primitive types aren’t objects

 Solution:
◦ Wrapper classes—instances are

used to “turn” primitive types
into objects
◦ Primitive value is stored in a

field inside the object

Primitive Wrapper
byte Byte
boolean Boolean
char Character
double Double
float Float
int Integer
long Long
short Short

Q2

 Auto-boxing: automatically enclosing a primitive
type in a wrapper object when needed

 Example:
◦ You write: Integer m = 6;
◦ Java does: Integer m = new Integer(6);

◦ You write: Integer answer = m * 7;
◦ Java does: int temp = m.intValue() * 7;

 Integer answer = new Integer(temp);

 Just have to remember to use wrapper class
for list element type

 Example:
◦ ArrayList<Integer> runs =
 new ArrayList<Integer>();
runs.add(9); // 9 is auto-boxed
◦ int r = runs.get(0); // result is unboxed

 Old school
double scores[] = …
double sum = 0.0;
for (int i=0; i < scores.length; i++) {
 sum += scores[i];
}

 New, whiz-bang, enhanced for loop
double scores[] = …
double sum = 0.0;
for (double score : scores) {
 sum += score;
}

 No index
variable (easy,
but limited in 2
respects)

 Gives a name
(score here) to
each element Say “in”

 ArrayList<State> states = …
int total = 0;
for (State state : states) {

 total += state.getElectoralVotes();
}

Q3

public class TicTacToe {
 private final int rows;
 private final int columns;
 private String[][] board;

 /**
 * Constructs a 3x3 TicTacToe board with all squares blank.
 */

 public TicTacToe() {
 this.rows = 3;
 this.columns = 3;

 this.board = new String[this.rows][this.columns];

 for (int r = 0; r < this.rows; r++) {
 for (int c = 0; c < this.columns; c++) {
 this.board[r][c] = " ";
 }
 }
 }

What is the value of this.board[1][2]
immediately after this statement executes?

Note the (very common) pattern: loop-through-rows,
for each row loop-through columns

Could have used:
this.board.length

Could have used:
this.board[r].length

Q4

Complete the TODO items in
TicTacToe and TicTacToeTest
They’re numbered; do ‘em in
order.

http://xkcd.com/85/

 Assignment uses reference values:
◦ double[] data = new double[4];
for (int i = 0; i < data.length; i++) {
 data[i] = i * i;
}

◦ double[] pieces = data;

◦ foo.someMethod(data);

pieces

public void someMethod(double[] d) {
 this.dataInMethod = d;
 ...
}

0 9 1 4 data

d

dataInMethod This makes the field a
reference to (NOT a copy
of) a list that exists
elsewhere in the code.
Think carefully about
whether you want this or
a clone (copy).

Q5-6

 You can copy an array in any of several ways:
1. Write an explicit loop, copying the elements one by one
2. Use the clone method that all arrays have
 newArray = oldArray.clone();

3. Use the System.arraycopy method:
 System.arraycopy(oldArray, 0, newArray, 0,
 oldArray.length);

4. Use the Arrays.copyOf method:
 newArray = Arrays.copyOf(

 oldArray, oldArray.length);

Starting position in oldArray

Starting position in newArray

Number of elements to copy

The key point is that all of these
except possibly the first make
shallow copies – see next slide

 Can copy whole arrays in several ways:
◦ double[] data = new double[4];
 ...

 pieces = data;

◦ double[] pizzas = data.clone();

◦ JLabel[] labels = new JLabel[4];
 ...

JLabel[] moreLabels = labels.clone();

0 pizzas 1 4 9

0 4 9 1

data

pieces

labels

hello
ciao

moreLabels Q7-8

 Consider an ElectionSimulator:
 Instead of storing:
◦ ArrayList<String> stateNames;
ArrayList<Integer> electoralVotes;
ArrayList<Double> percentOfVotersWhoPlanToVoteForA;
ArrayList<Double> percentOfVotersWhoPlanToVoteForB;

 We used:
◦ ArrayList<State> states;

and put the 4 pieces of data inside a State object
 Why bother?

Q9

 Array or ArrayList, that is the question

 General rule: use ArrayList
◦ Less error-prone because it grows as needed
◦ More powerful because it has methods

 Exceptions:
◦ Lots of primitive data in time-critical code
◦ Two (or more) dimensional arrays

Q10

 Regression testing
 Pair programming
 Team version control

 Keep and run old test cases

 Create test cases for new bugs
◦ Like antibodies, to keep a bug from coming back

 Remember:
◦ You can right-click the project in Eclipse to run all

the unit tests

Q11-12

 Let's watch the video together

 Working in pairs on a single computer
◦ One person, the driver, uses the keyboard
◦ The other person, the navigator, watches, thinks,

and takes notes
 For hard (or new) problems, this technique
◦ Reduces number of errors
◦ Saves time in the long run

 Works best when partners have similar skill
level
◦ If not, then student with most experience should

navigate, while the other student drives.

 Always:
◦ Update before working
◦ Update again before committing
◦ Commit often and with good messages

 Communicate with teammates so you don’t
edit the same code simultaneously
◦ Pair programming eliminates this issue

Check Out

Edit Update

Commit Update

Update and
Commit often!

1. A new cell is born on an
empty square if it has
exactly 3 neighbor cells

2. A cell dies of
overcrowding if it is
surrounded by 4 or
more neighbor cells

3. A cells dies of
loneliness if it has just
0 or 1 neighbor cells

x

Cell

Neighbors

Developed by John Conway, 1970

 ◦ http://svn.csse.rose-
hulman.edu/repos/csse220-201330-teamXX

Check out GameOfLife from SVN

csse220-201330-team01,benshorm,woodjl
csse220-201330-team02,brynelnm,mcnelljd
csse220-201330-team03,daruwakj,shumatdp
csse220-201330-team04,gauvrepd,kadelatj
csse220-201330-team05,gouldsa,tebbeam
csse220-201330-team06,griffibp,heathpr
csse220-201330-team07,hazzargm,songh1
csse220-201330-team08,holzmajj,roccoma
csse220-201330-team09,litwinsh,plugerar
csse220-201330-team10,malikjp,olivernp

Format: repositoryName,firstStudent,secondStudent

 csse220-201330-team11,adamoam,alayonkj
 csse220-201330-team12,bochnoej,wrightj3
 csse220-201330-team13,calhouaj,cheungnj
 csse220-201330-team14,evansc,wagnercj
 csse220-201330-team15,haloskzd,stephaje
 csse220-201330-team16,hullzr,phillics
 csse220-201330-team17,johnsoaa,kethirs
 csse220-201330-team18,johnsotb,tatejl
 csse220-201330-team19,liuj1,zhoup
 csse220-201330-team20,matsusmk,vanakema
 csse220-201330-team21,mookher,morrisrg
 csse220-201330-team22,naylorbl,winterc1
 csse220-201330-team23,nepoted,walthecn

Format: repositoryName,firstStudent,secondStudent

 Follow the TODO’s. Test as frequently as practical.
◦ If a part is hard, break it down into sub-parts and test each

sub-part as you go.
 There are at least 3 clever ways to avoid cluttering

code that references cells with IF’s to ensure that
they are not “off the edge of the board”, namely:
◦ “Wrap”. For example, if the board is 10x10, attempts to reference
board[10][3] are converted to board[0][3] (use the % operator).

◦ Write a “getter” that gets the value of a cell and returns a sensible
value (0?) if the reference is off the edge of the board. Ditto for a
“setter” if needed.

◦ For a 10x10 board, declare a 12x12 board and make the outer shell
all empty cells. You will find that you never make them non-empty
(loop from 1 to 10, not 0 to 11), so all is well.

 How: use Timer class to automatically “click”
button

 Details: in GameOfLifeMain:
◦ Use local variable for UpdateButton object
◦ Add timer code to end of main to repeatedly click

button at regular intervals:
 Timer mrClicker =
 new Timer(INTERVAL, updateButton);
mrClicker.start();

 Learn more: Big Java, Ch. 9.9

 Game of life due 11:59 PM on day of next class
 Work with your partner

on the Game of Life project
◦ Get help as needed

Before you leave today, make sure that you and your partner have
scheduled a session to complete the Game of Life project
• Where will you meet?

• Try the CSSE lab F-217/225
• When will you meet?

• Consider this evening,
7 to 9 p.m. Exchange contact info in case one of you needs to reschedule.

• Do it with your partner. If your partner bails out, DON’T do it alone until you communicate
 with your instructor.

 Work with your partner on the GameOfLife
project
◦ Get help as needed
◦ The TODOs are numbered – do them in the indicated

order.
◦ Follow the practices of pair programming!

 Don’t do any of the work without your partner!
 Good exam prep.

Finish RollingDice, then
continue on HW 6.

Q13-Q14

	CSSE 220 Day 6
	Questions?
	Exam 1 is Wednesday March27!
	So, what’s the deal with �primitive types?
	Auto-boxing Makes Wrappers Easy
	Auto-boxing Lets Us Use ArrayLists with Primitive Types
	Enhanced For Loop and Arrays
	Enhanced For and ArrayList’s
	Two-dimensional arrays
	Exercise
	Interlude:
	Copying Arrays – assignment
	Copying Arrays – many ways
	Copying Arrays – Shallow copies
	Quality Tip -“Avoid parallel arrays”
	Pick the Right Data Structure
	Software Engineering Techniques
	Regression Testing
	Pair Programming Video
	Pair Programming
	Team Version Control
	Team Version Control
	Game of Life
	Team Repositories
	Game of Life Teams Section 1
	Game of Life Teams Section 2
	Game of Life hints:
	Animating Game of Life
	Work Time
	Work Time
	Live Coding

