
Arrays, ArrayLists,  
Wrapper Classes, Auto-boxing, 

Enhanced for loop 

Check out ArraysAndLists and TwoDArrays 
from SVN 





 Over chapters 1-7 
 You'll have a chance to ask questions about 

anything in next Monday's class. 
 See Session 10 on the Schedule Page 

schedule for Exam 1 samples  

Part 1 – Written.  You may bring an 8.5 x 11 inch 
sheet of paper (double-sided, hand-written or 

printed) with whatever you want on it. 
Part 2 – Computer.  Code that you must write and 

debug. You can use your textbook, the Java API 
documents, and any programs that you have written 

or we have given you. Q1 



 Problem: 
◦ ArrayList’s only hold objects 
◦ Primitive types aren’t objects 
 

 Solution: 
◦ Wrapper classes—instances are 

used to “turn” primitive types 
into objects 
◦ Primitive value is stored in a 

field inside the object 

Primitive Wrapper 
byte Byte 
boolean Boolean 
char Character 
double Double 
float Float 
int Integer 
long Long 
short Short 

Q2 



 Auto-boxing: automatically enclosing a primitive 
type in a wrapper object when needed 

 Example: 
◦ You write:  Integer m = 6; 
◦ Java does:  Integer m = new Integer(6); 

 
◦ You write:  Integer answer = m * 7; 
◦ Java does:  int temp = m.intValue() * 7; 

 Integer answer = new Integer(temp); 



 Just have to remember to use wrapper class 
for list element type 
 

 Example: 
◦ ArrayList<Integer> runs =  
  new ArrayList<Integer>(); 
runs.add(9); // 9 is auto-boxed 
◦ int r = runs.get(0); // result is unboxed 



 Old school 
double scores[] = … 
double sum = 0.0; 
for (int i=0; i < scores.length; i++) { 
 sum += scores[i]; 
} 

 New, whiz-bang, enhanced for loop 
double scores[] = … 
double sum = 0.0; 
for (double score : scores) { 
 sum += score; 
} 
 

 No index 
variable (easy, 
but limited in 2 
respects) 

 Gives a name 
(score here) to 
each element Say “in” 



 ArrayList<State> states = … 
int total = 0; 
for (State state : states) { 

     total += state.getElectoralVotes(); 
} 

Q3 



public class TicTacToe { 
    private final int rows; 
    private final int columns; 
    private String[][] board; 
 
    /** 
     * Constructs a 3x3 TicTacToe board with all squares blank. 
     */ 

    public TicTacToe() { 
        this.rows = 3; 
        this.columns = 3; 
 
        this.board = new String[this.rows][this.columns]; 
         
        for (int r = 0; r < this.rows; r++) { 
            for (int c = 0; c < this.columns; c++) { 
                this.board[r][c] = " "; 
            } 
        } 
    } 
 

What is the value of   this.board[1][2] 
immediately after this statement executes? 

Note the (very common) pattern: loop-through-rows, 
for each row loop-through columns 

Could have used:  
this.board.length 

Could have used:  
this.board[r].length 

Q4 

 



Complete the TODO items in 
TicTacToe and TicTacToeTest 
They’re numbered; do ‘em in 
order. 



http://xkcd.com/85/ 



 Assignment uses reference   values: 
◦ double[] data = new double[4]; 
for (int i = 0; i < data.length; i++) { 
    data[i] = i * i; 
} 
 

◦ double[] pieces = data; 
 

◦ foo.someMethod(data); 

pieces 

public void someMethod(double[] d) { 
    this.dataInMethod = d; 
    ... 
} 

0 9 1 4 data 

d 

dataInMethod This makes the field a 
reference to (NOT a copy 
of) a list that exists 
elsewhere in the code.  
Think carefully about 
whether you want this or 
a clone (copy). 

Q5-6 



 You can copy an array in any of several ways: 
1. Write an explicit loop, copying the elements one by one 
2. Use the clone  method that all arrays have 
 newArray = oldArray.clone(); 

3. Use the System.arraycopy   method: 
 System.arraycopy(oldArray, 0, newArray, 0, 
                                   oldArray.length); 

4. Use the Arrays.copyOf   method: 
   newArray = Arrays.copyOf( 

     oldArray, oldArray.length); 

Starting position in oldArray 

Starting position in newArray 

Number of elements to copy 

The key point is that all of these 
except possibly the first make 
shallow copies – see next slide 



 Can copy whole arrays in several ways: 
◦ double[] data = new double[4]; 
   ... 

 pieces = data; 
 

◦ double[] pizzas = data.clone(); 
 
 

◦ JLabel[] labels = new JLabel[4]; 
   ... 

 
JLabel[] moreLabels = labels.clone(); 

0 pizzas 1 4 9 

0 4 9 1 

data 

pieces 

labels 

hello 
ciao 

moreLabels Q7-8 



 Consider an ElectionSimulator: 
 Instead of storing: 
◦ ArrayList<String> stateNames; 
ArrayList<Integer> electoralVotes; 
ArrayList<Double> percentOfVotersWhoPlanToVoteForA;  
ArrayList<Double> percentOfVotersWhoPlanToVoteForB; 

 We used: 
◦ ArrayList<State> states; 

and put the 4 pieces of data inside a State object 
 Why bother? 

Q9 



 Array or ArrayList, that is the question 
 
 

 General rule: use ArrayList 
◦ Less error-prone because it grows as needed 
◦ More powerful because it has methods 

 
 Exceptions: 
◦ Lots of primitive data in time-critical code 
◦ Two (or more) dimensional arrays 

Q10 



 Regression testing 
 Pair programming 
 Team version control 



 Keep and run old test cases 
 

 Create test cases for new bugs 
◦ Like antibodies, to keep a bug from coming back 

 
 Remember: 
◦ You can right-click the project in Eclipse to run all 

the unit tests 

Q11-12 



 Let's watch the video together 



 Working in pairs on a single computer 
◦ One person, the driver, uses the keyboard 
◦ The other person, the navigator, watches, thinks, 

and takes notes 
 For hard (or new) problems, this technique 
◦ Reduces number of errors 
◦ Saves time in the long run 

 Works best when partners have similar skill 
level 
◦ If not, then student with most experience should 

navigate, while the other student drives.  



 Always: 
◦ Update before working 
◦ Update again before committing 
◦ Commit often and with good messages 
 

 Communicate with teammates so you don’t 
edit the same code simultaneously 
◦ Pair programming eliminates this issue 



 
Check Out 

Edit Update 

Commit Update 

Update and 
Commit often! 



1. A new cell is born on an 
empty square if it has 
exactly 3 neighbor cells 

2. A cell dies of 
overcrowding if it is 
surrounded by 4 or 
more neighbor cells 

3. A cells dies of 
loneliness if it has just 
0 or 1 neighbor cells 

x 

Cell 

Neighbors 

Developed by John Conway, 1970 



 ◦ http://svn.csse.rose-
hulman.edu/repos/csse220-201330-teamXX 



Check out GameOfLife  from SVN   

csse220-201330-team01,benshorm,woodjl 
csse220-201330-team02,brynelnm,mcnelljd 
csse220-201330-team03,daruwakj,shumatdp 
csse220-201330-team04,gauvrepd,kadelatj 
csse220-201330-team05,gouldsa,tebbeam 
csse220-201330-team06,griffibp,heathpr 
csse220-201330-team07,hazzargm,songh1 
csse220-201330-team08,holzmajj,roccoma 
csse220-201330-team09,litwinsh,plugerar 
csse220-201330-team10,malikjp,olivernp 

Format:  repositoryName,firstStudent,secondStudent 



 csse220-201330-team11,adamoam,alayonkj 
 csse220-201330-team12,bochnoej,wrightj3 
 csse220-201330-team13,calhouaj,cheungnj 
 csse220-201330-team14,evansc,wagnercj 
 csse220-201330-team15,haloskzd,stephaje 
 csse220-201330-team16,hullzr,phillics 
 csse220-201330-team17,johnsoaa,kethirs 
 csse220-201330-team18,johnsotb,tatejl 
 csse220-201330-team19,liuj1,zhoup 
 csse220-201330-team20,matsusmk,vanakema 
 csse220-201330-team21,mookher,morrisrg 
 csse220-201330-team22,naylorbl,winterc1 
 csse220-201330-team23,nepoted,walthecn 

Format:  repositoryName,firstStudent,secondStudent 



 Follow the TODO’s.  Test as frequently as practical. 
◦ If a part is hard, break it down into sub-parts and test each 

sub-part as you go. 
 There are at least 3 clever ways to avoid cluttering 

code that references cells with IF’s to ensure that 
they are not “off the edge of the board”, namely: 
◦ “Wrap”.  For example, if the board is 10x10, attempts to reference 
board[10][3] are converted to board[0][3] (use the % operator). 

◦ Write a “getter” that gets the value of a cell and returns a sensible 
value (0?) if the reference is off the edge of the board.  Ditto for a 
“setter” if needed. 

◦ For a 10x10 board, declare a 12x12 board and make the outer shell 
all empty cells.  You will find that you never make them non-empty 
(loop from 1 to 10, not 0 to 11), so all is well. 



 How: use Timer class to automatically “click” 
button 
 

 Details: in GameOfLifeMain: 
◦ Use local variable for UpdateButton object 
◦ Add timer code to end of main to repeatedly click 

button at regular intervals: 
 Timer mrClicker =  
  new Timer(INTERVAL, updateButton); 
mrClicker.start(); 

 Learn more: Big Java, Ch. 9.9 



 Game of life due 11:59 PM on day of next class 
 Work with your partner 

on the Game of Life project 
◦ Get help as needed 

Before you leave today, make sure that you and your partner have 
scheduled a session to complete the Game of Life project 
•   Where will you meet? 

•  Try the CSSE lab F-217/225 
•   When will you meet? 

•  Consider this evening,  
7 to 9 p.m. Exchange contact info in case one of you needs to reschedule. 

•   Do it with your partner.  If your partner bails out, DON’T do it alone until you communicate   
      with your instructor. 



 Work with your partner on the GameOfLife 
project 
◦ Get help as needed 
◦ The TODOs are numbered – do them in the indicated 

order. 
◦ Follow the practices of pair programming! 

 Don’t do any of the work without your partner! 
 Good exam prep. 

 



Finish RollingDice, then 
continue on HW 6. 

Q13-Q14 
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