
API Documentation, Unit Testing

And Classes

 The syllabus

 Java

 etc.

 Could everyone checkout and commit the
HW1 project?

 Please consider making your picture on
ANGEL visible to students in your courses.
 Home Preferences (wrench icon) Personal info

 Cell Phones
◦ please set ringers to silent or quiet.

 Minimize class disruptions.

 But sometimes there are emergencies.

 Personal needs
◦ If you need to leave class for a drink of water, a trip

to the bathroom, or anything like that, you need not
ask me. Just try to minimize disruptions.

 Please be here and have your computer up and
running by the beginning of class time as best
you can.

 In the textbook

 In any of our materials.

 Use the Bug Report Forum on ANGEL

 More details in the Syllabus

 Check out Piazza

 Reinforce from 120:
◦ Procedural programming (functions, conditionals, loops, etc)
◦ Using objects

 Object-Oriented Design
◦ Major emphasis on interfaces

◦ GUI programming using Java Swing

◦ UML class diagrams

 Software Engineering concepts
 Recursion
 Program Efficiency Analysis and big-O notation
 Simple sorting and searching algorithms
◦ as examples for the above

 Data Structures
◦ Abstract data types

◦ Specifying and using some standard data structures

◦ Implementing simple data structures (lists)

 Small programming assignments in class

 Larger programming problems, mostly outside of
class
◦ Explore the JDK documentation to find the classes and

methods that you need

◦ Lots of testing and debugging!

◦ Reviewing other students’ code

 Reading (a lot to read at the beginning; less later)
◦ Thinking about exercises in the textbooks

◦ Some written exercises, mostly from the textbook

 Discussing the material with other students

API Documentation, Docs in
Eclipse, Writing your own Docs

 What’s an API?
◦ Application Programming Interface

 The Java API on-line
◦ Google for: java api documentation 7

◦ Or go to:
http://download.oracle.com/javase/7/docs/api/

◦ Also hopefully on your computer at

C:\Program Files\Java\jdk1.7.0_9\docs\api\index.html

You need the 6 to

get the current

version of Java

Q1

Note: Your version may be something other than 7.0_9.

We recommend that you bookmark this page in your

browser, so you can refer to it quickly, with or without an

internet connection.

http://download.oracle.com/javase/7/docs/api/
http://download.oracle.com/javase/7/docs/api/
C:/Program Files/Java/jdk1.7.0_9/docs/api/index.html
C:/Program Files/Java/jdk1.7.0_9/docs/api/index.html
C:/Program Files/Java/jdk1.7.0_9/docs/api/index.html
C:/Program Files/Java/jdk1.7.0_9/docs/api/index.html
C:/Program Files/Java/jdk1.7.0_9/docs/api/index.html
C:/Program Files/Java/jdk1.7.0_9/docs/api/index.html
C:/Program Files/Java/jdk1.7.0_9/docs/api/index.html
C:/Program Files/Java/jdk1.7.0_9/docs/api/index.html
C:/Program Files/Java/jdk1.7.0_9/docs/api/index.html
C:/Program Files/Java/jdk1.7.0_9/docs/api/index.html
C:/Program Files/Java/jdk1.7.0_9/docs/api/index.html
C:/Program Files/Java/jdk1.7.0_9/docs/api/index.html
C:/Program Files/Java/jdk1.7.0_9/docs/api/index.html

 Setting up Java API documentation in Eclipse
◦ Should be done already,

◦ If the next steps don’t work for you, instructions
are in today’s homework

 Using the API documentation in Eclipse
◦ Hover text

◦ Open external documentation (Shift-F2)

 Don’t try to memorize the Java libraries
◦ Nearly 9000 classes and packages!

◦ You’ll use a few dozen of them during this course

 Get in the habit of writing the javadocs before
implementing the methods
◦ It will help you think before doing, a vital software

development skill

◦ This is called programming with documented stubs

◦ I’ll try to model this. If I don’t, call me on it!

Q2

Test-driven Development,
unit testing and JUnit

 Using code that you write to test other code
◦ Focused on testing individual pieces of code (units) in

isolation

 Individual methods

 Individual classes

 Why would software engineers do unit testing?

Q3

 JUnit is a unit testing framework
◦ A framework is a collection of classes to be used

in another program.

◦ Does much of the work for us!

 JUnit was written by
◦ Erich Gamma

◦ Kent Beck

 Open-source software

 Now used by millions of Java developers

Q4

 MoveTester in Big Java shows how to write
tests in plain Java

 Look at JUnitMoveTester in today’s repository
◦ Shows the same test in JUnit

◦ Let’s look at the comments and code together…

 Test “boundary conditions”
◦ Intersection points: -40℃ == -40℉

◦ Zero values: 0℃ == 32℉

◦ Empty strings

 Test known values: 100℃ == 212℉
◦ But not too many

 Tests things that might go wrong
◦ Unexpected user input: “zero” when 0 is expected

 Vary things that are “important” to the code
◦ String length if method depends on it

◦ String case if method manipulates that

Important Slide: Use this
as a reference!

Unit test shout, whisper, and
holleWerld using “interesting”
test cases

Differences between primitive
types and object types in Java

 Variables of primitive type store values

 Variables of class type store references
◦ A reference is like a pointer in C, except

 Java keeps us from screwing up

 No & and * to worry about
(and the people say, “Amen”)

 Consider:

1. int x = 10;

2. int y = 20;

3. Rectangle box = new Rectangle(x, y, 5, 5);

10 x

20 y

5

10

20

5

box

Q5

 Actual value for number types

 Reference value for object types
◦ The actual object is not copied

◦ The reference value (“the pointer”) is copied

 Consider:
 1. int x = 10;

2. int y = x;

3. y = 20;

4. Rectangle box = new Rectangle(5, 6, 7, 8);

5. Rectangle box2 = box;

6. box2.translate(4, 4);

10 x

10 y 8

5

6

7
box

× 20
box2

× 9

× 10

Q6 – Q7

Separating implementation
details from how an object is
used

 Encapsulation—separating implementation
details from how an object is used
◦ Client code sees a black box with a known interface

◦ Implementation can change without changing client

Functions Objects

Black box
exposes

Function
signature

Constructor and
method
signatures

Encapsulated
inside the box

Operation
implementation

Data storage and
operation
implementation

Q8 – Q9

1. Create the (initially empty) class

◦ File ⇒ New ⇒ Class

2. Write documented stubs for the public interface of the class

3. Implement the class:

◦ Determine and implement instance fields

◦ Implement constructors and methods, adding private methods and
additional instance fields as needed

4. Test the class

3. Test and implement each
constructor and method
• Write the test cases BEFORE

implementing the constructor/method

WordGames Shouter

 Censor: given a string inputString, produces a new string by
replacing each occurrence of charToCensor with a “*” (an
asterisk).

 How do you deal with charToCensor ?

◦ Can it be a parameter of transform?

 No, that violates the specification

◦ Can it be a local variable of transform?

 No, it needs to live for the entire lifetime of the Censor.

◦ What’s left?

 Answer: It is a field ! (What is a sensible name for the field?)

 How do you initialize the field for charToCensor ?

◦ Answer: by using Censor’s constructors!

WordGames Censor

Finish quiz and pass it in

Continue working on
homework

Q10 - 11

