

 We are excited that you are here:
◦ Start your computer and get ready for our first class

session.
◦ Pick up a quiz from the back table and answer the

first two questions.

CSSE 220—Object-Oriented Software Development
Rose-Hulman Institute of Technology

 Roll Call
 Instructor intro
 A few administrative details
 Verify Eclipse and Subclipse configuration
 Java vs. Python and C
 Examine and modify simple Java programs

 I expect you to answer every question.
 Stop me if I don’t cover a question!

Q1 - 2

 Tell me what you prefer to be called
 For introductions give:
◦ Name (nickname)
◦ Residence Hall / Floor if on campus
◦ Hometown
◦ Something you enjoy or are very good at

 Student assistants: introduce yourselves.

 Instructor introduction

Q3

 ANGEL
 Syllabus
 Schedule

 7-9 PM Sunday-Thursday

Q4 – 7

 And neither is this course

 Ask, evaluate, respond, comment!

 Is it better to ask a question and risk
revealing your ignorance, or to remain silent
and perpetuate your ignorance?

 Even with statements like, “I have no idea
what you were just talking about.”

 We want to be polite, but in this room
learning trumps politeness!

 I do not intend for classroom discussions to
go over your head. Don't let them!

 Classes and objects
 Lists (but no special language syntax for

them like Python)
 Standard ways of doing graphics and GUIs
 A huge library of classes/functions that make

many tasks easier
 A nicer Eclipse interface than C has

 Primitive types: int, char, long, float, double
 Static typing
 Similar syntax and semantics for if, for, while,

break, function definitions, …
 Semicolons
 Program execution begins with main()
 Comments: // and /* … */
 Arrays are homogeneous, and size must be

declared at creation; size cannot change

 Widely used in industry for large projects
◦ From cell phones
 including smart phones—Android platform
◦ To global medical records

 Object-oriented (unlike C)
 “Statically type safe” (unlike Python, C, C++)
 Less complex than C++
 Part of a strong foundation
 Most popular language according to the TIOBE

Programming Community Index [November 2011]

Q8

http://www.tiobe.com/index.php/content/paperinfo/
tpci/index.html

Guess what language is #2

 I emailed you about upgrading.

 If you haven’t done it, you can now:
◦ http://www.rose-hulman.edu/class/csse/resources/Eclipse/csse220-update.htm

 Or do it later, which is more work for you.

13

http://www.rose-hulman.edu/class/csse/resources/Eclipse/csse220-update.htm

Interlude: JavaScript and Java have little in common
(except their names)

From Wikipedia (edited, bullets added to enhance PowerPoint readability):
• The change of name to JavaScript roughly coincided with Netscape adding

support for Java technology in its web browser.
• The name caused confusion, giving the impression that JavaScript was a

spin-off of Java.
• The choice has been characterized by many as a marketing ploy by

Netscape to give JavaScript the cachet of what was then the hot new web-
programming language.

• It has also been claimed that the language's name is the result of a co-
marketing deal between Netscape and Sun, in exchange for Netscape
bundling Sun's Java runtime with its then-dominant browser.

 New Eclipse workspace, Java perspective (there
is probably already a csse220 workspace on
your computer)

 Go to SVN Repository view, at bottom of the
workbench
◦ If it is not there, Window  Show View  Other 

 SVN  SVN Repositories
 Right-click in SVN view, then choose

 New Repository Location
◦ http://svn.csse.rose-hulman.edu/repos/csse220-

201330-your_username
 Right-click HW1 project and choose Checkout
◦ Accept default options
 Get help immediately if you’re stuck!

 To run a Java program:
◦ Right-click the .java file in Package Explorer view
◦ Choose Run As → Java Application

 Change the program to say hello to a person
next to you

 Introduce an error in the program
◦ See if you can come up with a different error than

the person next to you
 Fix the error that the person next to you

introduced

public class HelloPrinter {

 public static void main(String[] args) {
 System.out.println("Hello, World!");
 }

}

In Java, all variable and
function definitions are
inside class definitions main is where we start

System.out is Java's standard
output stream. This is the
variable called out in the
System class.

System.out is an object from
the PrintStream class.
PrintStream has a method
called println().

Q9

public class Factorial {
 public static final int MAX = 17;

 public static int factorial(int n) {
 int product;

 product = 1;
 for (int i = 2; i <= n; i++) {
 product = product * i;
 }

 return product;
 }

 public static void main(String[] args) {
 for (int i = 0; i <= Factorial.MAX; i++) {
 System.out.print(i);
 System.out.print("! = ");
 System.out.println(factorial(i));
 }
 }
}

Define a constant, MAX

println (below) terminates
the output line after printing;
print doesn’t.

Except for public
static and the
declaration of the
loop counter
inside the for
header, everything
about this
function definition
is identical to C.

Make a new class (File ~ New ~ Class) called Factorial
(check the box to let Eclipse type main for you). Enter &
run the Factorial code. What happens when i = 14? Why?

This class is called
Factorial. It has
one field called
MAX and two
methods: factorial
and main.

Q10 - 12

/**
 * Has a static method for computing n!
 * (n factorial) and a main method that
 * computes n! for n up to Factorial.MAX.
 *
 * @author Claude Anderson et al.
 */
public class Factorial {
 /**
 * Biggest factorial to compute.
 */
 public static final int MAX = 17;

 /**
 * Computes n! for the given n.
 *
 * @param n
 * @return n! for the given n.
 */
 public static int factorial (int n) {
 ...
 }

 ...

}

We left out something
important on the previous
slide – comments!

Java provides Javadoc
comments (they begin with
/**) for both:
• Internal documentation
for when someone reads
the code itself
• External documentation
for when someone re-uses
the code

Comment your own code now,
as indicated by this example.
Don’t forget the @author tag in
HelloPrinter.

 Written in special comments: /** … */
 Can come before:
◦ Class declarations
◦ Field declarations
◦ Constructor declarations
◦ Method declarations

 Eclipse is your friend!
◦ It will generate Javadoc comments automatically
◦ It will notice when you start typing a Javadoc

comment

 Write appropriate comments:
◦ Javadoc comments for public fields and methods.
◦ Explanations of anything else that is not obvious.

 Give self-documenting variable and method
names:
◦ Use name completion in Eclipse, Ctrl-Space, to keep typing

cost low and readability high
 Use Ctrl-Shift-F in Eclipse to format your code.
 Take care of all auto-generated TODO’s.
◦ Then delete the TODO comment.

 Correct ALL compiler warnings. Quick Fix is your
friend!

 The rules:
◦ Start with letter or underscore (_)
◦ Followed by letters, numbers, or underscores

 The conventions:
◦ variableNamesLikeThis
◦ methodNamesLikeThis(…)
◦ ClassNamesLikeThis

 You should follow the conventions!

Q13 – Q15

 Like C:
◦ int xCoordinate = 10;

 But Java catches some mistakes:
 int width, height, area;
 area = width * height;

◦ Java will detect that width and height aren’t

initialized!

What does this do in C?

 Works just like Python:
◦ object.method(argument, ...)

 Java Example:

Implicit
argument

Explicit
arguments

String name = "Bob Forapples";
PrintStream printer = System.out;

int nameLen = name.length();
printer.printf("'%s' has %d characters", name, nameLen);

The dot notation is
also used for fields

“Who does what,
with what?”

Q16

 We can use an object's methods without
knowing how they are implemented
◦ Recall zellegraphics from csse 120:
line.setWidth(5)

 Shows the:
◦ Attributes

(data, called fields
in Java) and

◦ Operations
(functions, called
methods in Java)

of the objects of a class
 Does not show the

implementation
 Is not necessarily

complete

String
data: char[]

boolean contains(String s)

boolean endsWith(String suffix)

int indexOf(String s)

int length()

String replace(String target,
 String replace)

String substring(int begin,
 int end)

String toLowerCase()

Class name

Fields

Methods
String objects are immutable – if the method produces
a String, the method returns that String rather than
mutating (changing) the implicit argument

Checkout ObjectsAndMethods
from SVN
Work on UsingStrings.java

 Arguments can be any expression of the “right”
type
◦ See example…

 What happens if we try to give substring() an
explicit argument that isn’t a number?
◦ How does the compiler know that rhit.length()

evaluates to a number?
◦ What’s the return type of length()?
String rhit = “Rose-Hulman”;
System.out.println("Rose");
System.out.println(rhit.substring(0, 4));
System.out.println(rhit.substring(0, 2+2));
System.out.println(rhit.substring(0, rhit.length() - 7));
System.out.println("Rose-Hulman".substring(0, 4));

Copyright © 2006 Pearson
Addison-Wesley. All rights
reserved. 1-30

Most common
number types in
Java code Q17

Work on SomeTypes.java

 Example:
Rectangle box = new Rectangle(5, 10, 20, 30);

 Several steps are happening here:
1. Java reserves space for a Rectangle object
2. Rectangle’s constructor runs, filling in slots in object
3. Java reserves a variable named box
4. box is set to refer to the object

x, y, width, height

Q18

 Accessor methods
◦ Get a value from an object
◦ Examples:
 box.getHeight()
 box.getWidth()

 Mutator methods
◦ Change the state of an object (i.e., the value of one

or more fields)
◦ Examples:
 box.translate(10, 20)
 box.setSize(5, 5)

Tip: Use mutators with care!

Q19–Q20

 Write appropriate comments:
◦ Javadoc comments for public fields and methods.

◦ Explanations of anything else that is not obvious.

 Give self-documenting variable and method names:
◦ Use name completion in Eclipse, Ctrl-Space, to keep typing

cost low and readability high.

 Use Ctrl-Shift-F in Eclipse to format your code.

 Take care of all auto-generated TODO’s.
◦ Then delete the TODO comment.

 Correct ALL compiler warnings.
◦ Quick Fix is your friend!

HW1a, linked from the
 schedule page

HW1b Due Friday by 11:59 PM

Q21–Q22

	Welcome to CSSE 220
	Course Introduction,�Starting with Java
	Agenda
	Daily Quizzes
	Roll Call, Introductions
	A Tour of the On-line Course Materials
	Programming is not a spectator sport
	It's OK to interrupt during class discussions
	Introduction to Java
	Things Java Has in Common with Python
	Things Java Has in Common with C
	Why Java?
	Java 7 and Eclipse Juno
	Slide Number 14
	Checkout today's project (HW1)
	HelloPrinter.java
	A First Java Program
	A Second Java Program
	Javadoc comments
	Writing Javadocs
	In all your code:
	Identifiers (Names) in Java
	Variables in Java
	Using Objects and Methods
	Separating Use from Implementation
	UML Class Diagram
	Exercise
	Interlude
	Passing Parameters
	Primitive types
	Exercise
	Constructing Objects
	Accessors and Mutators
	Reminder: In all your code:
	Homework Due �Before Next Session

