CSSE 220 Day 17

Details on class implementation,
Interfaces and Polymorphism

Check out OnTolnterfaces from SVN

Questions?

Today

» Variable scope
» Packages recap
» Interfaces and polymorphism

Variable Scope

» Scope: the region of a program in which a
variable can be accessed
> Parameter scope: the whole method body

- Local variable scope: from declaration to block end:

* public double myMethod() {
double sum = 0.0;
Point2D prev =
this.pts.get(this.pts.size() - 1);

for (Point2D p : this.pts) {

sum += prev.getX() * p.getY();

sum -= prev.getY() * p.getX();

prev = p;
}
return Math.abs(sum / 2.0);

Member (Field or Method) Scope

» Member scope: anywhere in the class,
including before its declaration

> This lets methods call other methods later in the
class.

» public static class members can be
accessed from outside with “class qualified
names”

o Math.sqgrt()
o System.in

Overlapping Scope and Shadowing

public class TempReading {
private double temp;

public void setTemp(double temp) {
this.temp = temp;

What does this
“temp” refer
to?

Always qualify field references
with . It prevents accidental
shadowing.

Last Bit of Static

» Static imports let us use unqualified names:
o import static java.lang.Math.PI;
o import static java.lang.Math.cos;
o import static java.lang.Math.sin;

» See the polygon.drawon() method in the
DesigningClasses project

Review: Packages

» Packages let us group
related classes

» We've been using them:
o javax.swing

o java.awt
o java.lang

Avoiding Package Name Clashes

» Java built-in Timer class?
o java.util.Timer, javax.swing.Timer
- Packages allow us to specify which we want to use.

» Package naming convention: reverse URLS

- Examples:
- edu.roseHulman.csse.courseware.scheduling
- com.xkcd.comicSearch

Z Groups related
classes as
company sees fit

Specifies the
company or
organization

Qualified Names and Imports

» Can use import to get classes from other
packages:
o import java.awt.Rectangle;

» Suppose we have our own Rectangle class
and we want to use ours and Java’s?

> Can use “fully qualified names”:

* java.awt.Rectangle rect =
new java.awt.Rectangle(10,20,30,40);

- U-G-L-Y, but sometimes needed.

Interface Types

» Express common operations that multiple
classes might have in common

» Make “client” code more reusable

» Provide method signatures and
documentation

» Do not provide method implementations or
fields

Interface Types: Key Idea

» Interface types are like contracts

- A class can promise to implement an interface
- That is, implement every method

> Client code knows that the class will have those
methods
- Compiler verifies this

- Any client code designed to use the interface type
can automatically use the class!

. —e

»
P4
/

o M ..
o o« e
o - o
L 3 o fad i) L
4

*— .A.__-

*— &—__ o
*—_ .\.,_‘_‘ .-4__.
- ._ .

Package Tracking

| don’t even want this
package. Why did |
sign up for the

stinging insect of the
month club anyway?

ONUNE PACKAGE TRACKING:
CONVENIENT MAKES You

USEFUL CRAZY
#REFRESH*
[AWM, STILL IN MEMPHIS.
+REFRESHS |
| A STILIN MEMPHIS
+REFRESHF |

AWW, STILL (N MEMPHIS.

/

uz:

Distinguishes
interfaces
from classes

Charges UML

ChargeMain | --constructsa _ 5| gpace f--4-------------

Hollow,

|

|

|

|

|

|

' v
: _CIOS ed «interface»

: triangular Charge Vector
|

|

|

|

|

|

|

|

|

tip means

PointCharge /4 A

is a Charge jm————--

- -constructs-a _ 5.1 pointCharge

Notation: In Code—"

public interface Charge {
/**
* regular javadocs here
*/

Vector forceAt(int x, int y);

J//** No method

automatically * pegular javadocs here body, just a
are so x/

void drawOn(Graphics2D g);

No “public”,

semi-colon

}

public class PointCharge implements Charge {

—/

PointCharge promises to implement all the

methods declared in the Charge interface

Updated Charges UML

ChargeMain |- - -constructs-a _ Space R
|
: :
l |
: has-a \
|

|
! {

«interface»
Charge Vector

A

I e e)
| I
| I
1 1

- . constructs-a .
-constructs-a _ 5| pointCharge |<----- -~ - - LinearCharge |- -

_____l----————-——————-

constructs-a |

Interfaces reduce coupling!

How does all this help reuse?

» Can pass an instance of a class where an
interface type is expected
- But only if the class implements the interface
» We passed LinearCharges to Space’s
addCharge(Charge c) method without
changing Space!

» Use interface types for field, method
narameter, and return types whenever
nossible

Why is this OK?

» Charge ¢ = new PointCharge(..);
Vector vl = c.forceAt(..);
c = new LinearCharge(..);
Vector v2 = c.forceAt(..);

» The type of the actual object determines the
method used.

Polymorphism

» Origin:
> Poly 2 many
> Morphism = shape

» Classes implementing an interface give many
differently “shaped” objects for the interface

type

» Late Binding: choosing the right method
based on the actual type of the implicit
parameter at run time

