
Inheritance recap
Object: the superest class of all

Inheritance and text in GUIs

Check out Inheritance2 from SVN

Exam 2 is on Tuesday, May 1, 2012 (7 – 9 PM)
Section 1: Olin 231
Section 2: Olin 233

 On ANGEL, under Lessons  Assignments
 Preferences help me to choose teams; I also consider your

performance so far in the course
 Complete the survey by Monday, April 30, 2012, noon
 Most teams will have 3 students
 Are you willing to be on a team of 2
 List up to 5 students you'd like to work with, highest

preference first.
◦ You may not get your first choices, so it's a good idea to

list more than two
◦ Best to choose partners whose commitment level and

current Java coding/debugging ability is similar to yours
 List up to 2 students you'd prefer NOT to work with
◦ I'll do my best to honor this, but I must find a team for

everyone.

A quick recap of last session

 Sometimes a new class is a
special case of the concept
represented by another

 Can “borrow” from an
existing class, changing just
what we need

 The new class inherits from
the existing one:
◦ all methods
◦ all instance fields

 class SavingsAccount extends BankAccount {
 // added fields
 // added methods
}

 Say “SavingsAccount is a BankAccount”

 Superclass: BankAccount

 Subclass: SavingsAccount

The “superest”
class in Java

Still means
“is a”

Solid line
shows

inheritance

 Inherit methods unchanged

 Override methods
◦ Declare a new method with same signature to use

instead of superclass method

 Add entirely new methods not in superclass

 ALWAYS inherit all fields unchanged

 Can add entirely new fields not in superclass

DANGER! Don’t use
the same name as a

superclass field!

 Calling superclass method:
◦ super.methodName(args);

 Calling superclass constructor:
◦ super(args);

Must be the first
line of the subclass

constructor

 public—any code can see it

 private—only the class itself can see it

 default (i.e., no modifier)—only code in the
same package can see it

 protected—like default, but subclasses also
have access

The superest class in Java

 Every class in Java inherits from Object

◦ Directly and explicitly:
 public class String extends Object {…}

◦ Directly and implicitly:
 class BankAccount {…}

◦ Indirectly:
 class SavingsAccount extends BankAccount {…}

Q1

 String toString()

 boolean equals(Object otherObject)

 Class getClass()

 Object clone()

 …

Often overridden

Sometimes useful

Often dangerous!

Q2

 Return a concise, human-readable summary
of the object state

 Very useful because it’s called automatically:
◦ During string concatenation
◦ For printing
◦ In the debugger

 getClass().getName() comes in handy

here…

Q3

 Should return true when comparing two
objects of same type with same “meaning”

 How?
◦ Must check types—use instanceof
◦ Must compare state—use cast

 Example…

Q4

Review and Practice

 A subclass instance is a superclass instance
◦ Polymorphism still works!
◦ BankAccount ba = new SavingsAccount();
ba.deposit(100);

 But not the other way around!
◦ SavingsAccount sa = new BankAccount();
sa.addInterest();

 Why not? BOOM!

 Can use:
◦ public void transfer(double amt, BankAccount o){
 this.withdraw(amount);
 o.deposit(amount);
}
in BankAccount

 To transfer between different accounts:
◦ SavingsAccount sa = …;
◦ CheckingAccount ca = …;
◦ sa.transfer(100, ca);

 If B extends or implements A, we can write
 A x = new B();

Declared type tells which
methods x can access.
Compile-time error if try to
use method not in A.

The actual type tells which
class’ version of the
method to use.

 Can cast to recover methods from B:
 ((B)x).foo()

 Now we can access all of
B’s methods too.

If x isn’t an instance of
B, it gives a run-time
error (class cast
exception)

Q5-7, hand in when done, then start reading BallWorlds spec

• Meet your partner
• Carefully read the

requirements and provided
code

• Ask questions (instructor and
TAs).

Check out BallWorlds from SVN

csse220-201230-BW01, andrewca, meltonej
csse220-201230-BW02, heidlapt, mooretr
csse220-201230-BW03, thomaszk, alvareap, andersjr
csse220-201230-BW04, kohlscd, weissna
csse220-201230-BW05, shomerrt, padillbt
csse220-201230-BW06, jonescd, mccormjt
csse220-201230-BW07, antleyp, beckerja
csse220-201230-BW08, dionkm, yeomanms
csse220-201230-BW09, rodriga, fagglr
csse220-201230-BW10, johnsom2, yoons1
csse220-201230-BW11, wintoncc, bearder
csse220-201230-BW12, armacoce, patterda

Check out BallWorlds from SVN

csse220-201230-BW21, yadavy, kowalsdj
csse220-201230-BW22, brindldc, bromenad
csse220-201230-BW23, earlesja, wellsdb
csse220-201230-BW24, huangf, hallami
csse220-201230-BW25, jennedj, petryjc
csse220-201230-BW26, finneysm, depratc
csse220-201230-BW27, brophywa, maibacmw
csse220-201230-BW28, fritzdn, phillijk
csse220-201230-BW29, lashmd, turnerrs
csse220-201230-BW30, brokllh, almisbmn
csse220-201230-BW31, abadbg, darttrf
csse220-201230-BW32, solomovl, iversoda

Pulsar, Mover, etc.

You can turn BallWorlds in on Monday before noon for
full credit. If you miss that deadline, you may turn it in
by Tuesday at 11:59 p.m. for 90% credit.

	CSSE 220 Day 20
	Questions?
	Project Team Preference Survey
	Inheritance Review
	Inheritance
	Notation and Terminology
	Inheritance in UML
	With Methods, Subclasses can:
	With Fields, Subclasses:
	Super Calls
	Access Modifiers
	I, Object
	Object
	Object Provides Several Methods
	Overriding toString()
	Overriding equals(Object o)
	Polymorphism
	Polymorphism and Subclasses
	Another Example
	Summary
	BallWorlds
	BallWorlds Teams – Section 1
	BallWorlds Teams – Section 2
	BallWorlds Worktime

