
10/17/2011

1

Inheritance

Check out Inheritance from SVN

If you don't know C:
CSSE 120 is beginning the modules on C today
The lectures are on video
You may want to follow along as this term progresses
Watch the videos, do the quizzes (no need to turn them in)
Do the homework problems
If you have difficulties, go to lab assistant hours or see me
For links to everything:

go to 120 schedule, starting with Days 20 and 22.
http://www.rose-hulman.edu/class/csse/csse120/201210/Schedule/Schedule.htm

10/17/2011

2

� Sometimes a new class is a a a a
special case special case special case special case of the concept
represented by another

� Can “borrow” from an
existing class, changing just
what we need

� The new class inheritsinheritsinheritsinherits from
the existing one:
◦ all methods

◦ all instance fields

Q1

� class SavingsAccount extends BankAccount
◦ adds interest earning, keeps other traits

� class Employee extends Person
◦ adds pay information and methods, keeps other

traits

� class Manager extends Employee
◦ adds information about employees managed,

changes the pay mechanism, keeps other traits

10/17/2011

3

� class SavingsAccount extends BankAccount {
// added fields
// added methods

}

� Say “SavingsAccount is ais ais ais a BankAccount”

� SuperclassSuperclassSuperclassSuperclass: BankAccount

� SubclassSubclassSubclassSubclass: SavingsAccount

Q2

The “superest”
class in Java

Still means
“is a”

Solid line
shows

inheritance

Q3

10/17/2011

4

� class ClickHandler implements MouseListener

◦ ClickHandler promisespromisespromisespromises to implement all the
methods of MouseListener

� class CheckingAccount extends BankAccount

◦ CheckingAccount inheritsinheritsinheritsinherits (or overrides) all the
methods of BankAccount

For clientclientclientclient code
reuse

For
implementation implementation implementation implementation

code reuse

10/17/2011

5

� InheritInheritInheritInherit methods unchanged

� OverrideOverrideOverrideOverride methods
◦ Declare a new method with same signature to use

instead of instead of instead of instead of superclass method

� AddAddAddAdd entirely new methods not in superclass

Q4

� ALWAYS inheritALWAYS inheritALWAYS inheritALWAYS inherit all fields unchanged

� Can addCan addCan addCan add entirely new fields not in superclass

DANGER! Don’t use
the same name as a

superclass field!

Q5

10/17/2011

6

� Calling superclass methodmethodmethodmethod:

◦ super.methodName(args);

� Calling superclass constructorconstructorconstructorconstructor:

◦ super(args);

Must be the first
line of the subclass

constructor

Q6

� A subclass instance is ais ais ais a superclass instance
◦ Polymorphism still works!

◦ BankAccount ba = new CheckingAccount();
ba.deposit(100);

� But not the other way around!

◦ CheckingAccount ca = new BankAccount();
ca.deductFees();

� Why not?
BOOM!

For clientclientclientclient code reuse

Q7

10/17/2011

7

� Can use:
◦ public void transfer(double amt, BankAccount o){

withdraw(amount);
o.deposit(amount);

}

in BankAccount

� To transfer between different accounts:
◦ SavingsAccount sa = …;

◦ CheckingAccount ca = …;

◦ sa.transfer(100, ca);

� Hybrid of superclasses and interfaces
◦ Like regular superclasses:

� Provide implementation of some methods

◦ Like interfaces

� Just provide signatures and docs of other methods

� Can’t be instantiated

� Example:

◦ public abstract class BankAccount {
/** documentation here */
public abstract void deductFees();
…

}
Elided methods as before

Also look at
the code in
the shapes
package,
especially
ShapesDemo
(during or
after class)

10/17/2011

8

� Review
◦ public—any code can see it

◦ private—only the class itself can see it

� Others
◦ defaultdefaultdefaultdefault (i.e., no modifier)—only code

in the same packagepackagepackagepackage can see it

� good choice for classes

◦ protected—like default, but
subclasses also have access

� sometimes useful for helper methods

Bad
for

fields!

Q8

Linear Lights Out

Q9-Q10

10/17/2011

9

Demo
UML Design Questions

