9/1/2011

Welcome to CSSE 220

» Please do not sit in the back row

» Please sit:

> Sit on the right side or as close to the front on the
left side of the room as you can.

» We are excited that you are here:

- Start your computer and get ready for our first class
session.

P

Course Introduction,
Starting with Java

CSSE 220—O0Object-Oriented Software Development
Rose-Hulman Institute of Technology

9/1/2011

Agenda

» Roll Call

» A few administrative details

» Verify Eclipse and Subclipse configuration
» Java vs. Python and C

» A first Java program (calculate factorials)

Daily Quizzes

» | expect you to answer every question.
» Stop me if | don’t cover a question!

Roll Call, Introductions

» Tell me what you prefer to be called
» For introductions give:

> Name

- Hometown

> Something you enjoy or are very good at

» Instructor intro

A Tour of the On-line Course
Materials

» ANGEL
» Syllabus
» Schedule

9/1/2011

Programming is not a spectator
sport
» And neither is this course

» Ask, evaluate, respond, comment!

» Is it better to ask a question and risk
revealing your ignorance, or to remain silent
and perpetuate your ignorance?

Feel free to interrupt during class
discussions

» Even with statements like, 7 have no idea
what you were just talking about.”

» We want to be polite, but in this room
learning trumps politeness.

» | do not intend for classroom discussions to
go over your head. Don't let them!

9/1/2011

Things Java Has in Common with
Python

» Classes and objects

» Lists (but no special language syntax for
them like Python)

» Standard ways of doing graphics, GUIs.

» A huge library of classes/functions that make
many tasks easier.

» A nicer Eclipse interface than C has.

Things Java Has in Common with C

» Primitive types: int, char, long, float, double

» Static typing

» Similar syntax and semantics for if, for, while,
break, function definitions, ...

» Semicolons

» Execution begins with main()

» Comments: // and /* ... */

» Arrays are homogeneous, and size must be
declared at creation.

9/1/2011

Why Java?

» Widely used in industry for large projects
> From cell phones
- including smart phones—Android platform
> To global medical records

» Object-oriented (unlike C)

» “Statically type safe” (unlike Python, C, C++)
» Less complex than C++

» Part of a strong foundation

» Most popular language according to the
TIOBE Programming Community Index
August 2011]

Let’s Get Started!

» Hopefully you have: » This will:

°Java l.6 or 1.7 > Configure Eclipse
> Eclipse (Ganymede or > Create a Workspace for
Helios) your Java projects
> Subclipse > Set up your SVN
repository in Eclipse
» Go to Homework 1 > Check out today’s SVN

and do: step 4, HW1 project

then step 5a-d.

» Figure out how to run
HelloPrinter.java

Get help if you’re stuck!

re is some help on the next few slides)

9/1/2011

9/1/2011

THEN WE PROGRAM
THE WEB SITE USING A
FAST GUY IN TIGHTS
AND A MOVIE ABOUT
COFFEE.

4 Al

CORRECT
MEIFIM 1avac

WRONG. scr1pT

www.dilbert.com scottadame®aclcom
|
- S—
2007 Scott Adams, Inc./Dist. by UFS, Inc.

© Scott Adams, Inc./Dist. by UFS, Inc.

Checkout project for today

» Go to SVN Repository view, at bottom of the
workbench

o If itis not there,
Window = Show View = Other - SVN
- SVN Repositories

» Browse SVN Repository view for HW1 project
» Right-click it, and choose Checkout
> Accept default options
» Expand the HW1 project that appears in
Package Explorer (on the left-hand-side)

HelloPrinter.java

» To run a Java program:

> Right-click it in the Package Explorer view
> Choose Run As — Java Application

» Change the program to say hello to a person

next to you

» Introduce an error in the program
- See if you can come up with a different error than

the person next to you

» Fix the error that the person next to you

introduced

A First Java Program

In Java, all variable and
function definitions are
inside class definitions

N\

public class HelloPrinter {

main is where we start

public static void main(String[] args) {

System. out.println("Hello,

SRV N

System.out is Java's standard
output stream. This is the
variable called out in the
System class.

World!");

System.out is an object from
the PrintStream class.
PrintStream has a method
called printin().

9/1/2011

A Second
Java
Program

Except for public
static and the
declaration of the
loop counter
inside the for
header, everything
about this
function definition
is identical to C.

Define a constant, MAX —]
public class Factorial {

public static final int MAX = 17;

public static int factorial (int n) {

/ int product;

product = 1;
for (int i = 2; i <= n; i++) {
product = product * i;
}
println (below) terminates

return product; the output line after printing;
} print doesn’t.

public static void main(String[] args) {

This class is called
Factorial. It has
one field called
MAX and two

for (int i = 0; i <= Factorial.MAX; i++) {
System.out.print (i) ;
System.out.print ("! = ");
System.out.println(factorial(i));

methods: factorial }
and main. }
}

/**

* Has a static method for computing n!

* (n factorial) and a main method that

* computes n! for n up to Factorial.MAX.
*
*

@author Claude Anderson et al.
*/
public class Factorial ({
/**
* Biggest factorial to compute.
*/
public static final int MAX = 17;

/**

* Computes n! for the given n.
*

* @param n

* @return n! for the given n.
*/

public static int factorial (int n) {

}

Javadoc
comments

We left out something
important on the previous
slide — comments!

Java provides Javadoc
comments (they begin with
/**) for both:

* Internal documentation
for when someone reads
the code itself

» External documentation
for when someone re-uses
the code

9/1/2011

Writing Javadocs

» Written in special comments: /** ... ¥/

» Can come before:
> Class declarations
> Field declarations
> Constructor declarations
> Method declarations
» Eclipse is your friend!
> It will generate Javadoc comments automatically

> It will notice when you start typing a Javadoc
comment

In all your code:

» Write appropriate comments:
> Javadoc comments for public fields and methods.
- Explanations of anything else that is not obvious.
» Give self-documenting variable and method
names:

> Use name completion in Eclipse, Ctrl-Space, to keep typing
cost low and readability high

» Use Ctrl-Shift-F in Eclipse to format your code.
» Take care of all auto-generated TODO'’s.
> Then delete the TODO comment.
» Correct ALL compiler warnings. Quick Fix is your

frind! .[l_\]

L 3

9/1/2011

10

9/1/2011

Homework Due
Next Session

HW1, linked from schedule

1

