CSSE 220 Day 26

Linked List Implementation
Data-structure-palooza

Checkout LinkedLists project from SVN

Questions

Data Structures

» Efficient ways to store data based on how
we’ll use it

» The main theme for the rest of the course

» So far we’ve seen ArraylLists
- Fast addition to end of list
- Fast access to any existing position
> Slow inserts to and deletes from middle of list

Another List Data Structure

» What if we have to add/remove data from a
list frequently? data

» LinkedLists support this:
- Fast insertion and removal of elements
- Once we know where they go
> Slow access to arbitrary elements

; data
“random access

newNode newNode

B \; \ data
R

—»| A —™ C —1» A / C —>
node node.next node

data

data | null

Insertion, per Wikipedia

LinkedList<E> Methods

» void addFirst(E element)
» void addLast(E element)
» E getFirst()

» E getLast()

» E removeFirst()

» E removelLast()

» What about accessing the middle of the list?
- LinkedList<E> implements Iterable<E>

IIIIII§§§iiii==!!-_;

Accessing the Middle of a

LinkedList

<<interfaces=
lterable<E>

lterator<E= iterator()

LinkedList<E>

.

<<interfaces:=
lterator<E>

boolean hasMext()
E next()
void remaove()

<<interfaces=
Listiterator<E>

void add(E element)
boolean hasPrevious()
E previous()

An Insider’s View

for (String s : list) { Iterator<String> iter =
// do something list.1terator();

3
while (iter.hasNext()) {

String s = iter.next();
// do something
}

Enhanced For Loop What Compiler Generates

Implementing LinkedList

» A simplified version, with just the essentials

» Won’t implement the java.util.List interface

» Will have the usual linked list behavior

- Fast insertion and removal of elements
- Once we know where they go
> Slow random access

MORTAL! I COME
The only READ THE SIGN.
blood these "BY ENTERING THIS RCOM,
YOU AGREE To FORFEIT YOUR
contracts are SN SOUL RATER THEN
I I I NEGOTIARTE WITH THE MORTAL
S|gned A RESID:NG THEREIN..."
from me /| WAL YOO CANT-
cutting my))
hand trying
to open the - O
d@Amned CD
case.

MEPHISTOPHELES ENCOUNTERS THE E.U.L.A.

Abstract Data Types (ADTs)

» Boil down data types (e.g., lists) to their
essential operations

» Choosing a data structure for a project then
becomes:
- |dentify the operations needed

- ldentify the abstract data type that most efficient
supports those operations

» Goal: that you understand several basic
abstract data types and when to use them

Common ADTs

» Array List
» Linked List
» Stack

» Queue

» Set

» Map

Implementations for all of
these are provided by the
in the

package.

Array Lists and Linked Lists

Operations Array List Linked List
Provided Efficiency Efficiency
Random access O(1) O(n)
Add/remove item O(n) O(1)

.

Stacks

» A last-in, first-out (LIFO) data structure

» Real-world stacks
- Plate dispensers in the cafeteria
> Pancakes!

» Some uses:

> Tracking paths through a maze
> Providing “unlimited undo” in an application

Implemented by

Operations Efficiency
Provided

Push item 0o(1) and

Java

Pop item O(1)

D

Queues

» A first-in, first-out (FIFO) data structure

» Real-world queues
- Waiting line at the BMV
> Character on Star Trek TNG
» Some uses:
- Scheduling access to shared resource (e.g., printer)

Operations Efficiency
Provided

Enqueue item O(1) and
In Java

Implemented by

Dequeue item O(1)

\

Sets

» Unordered collections without duplicates

» Real-world sets
> Students
> Collectibles

» Some uses:
- Quickly checking if an item is in a collection

Add/remove item O(1) O(lg n)
Contains? O(1) O(lg n)

Ol
W

Maps

» Associate keys with values
» Real-world “maps”

> Dictionary

> Phone book
» Some uses:

- Associating student ID with transcript
- Associating name with high scores

Operations | HashMap | _TreeMap _

Insert key-value pair O(1) O(lg n)
Look up value for key O(1) O(lg n)

| Can hog space

Markov Chain Progam

» Input: a text file

the skunk jumped over the stump
the stump jumped over the skunk
the skunk said the stump stunk
and the stump said the skunk stunk

» Output: a randomly
generated list of words
that is “like” the original
input in a well-defined

way

Markov Chain Process

» Gather statistics on word patterns by building
an appropriate data structure

» Use the data structure to generate random
text that follows the discovered patterns

Markov Example, n = 1
» Input: a text file

the skunk jumped over the stump | \ONWORD the
the stump jumped over the skunk the skunk (4),
the skunk said the stump stunk stump (4) |
and the stump said the skunk stunk | SKUnK jumped, said,
stunk, the
jumped over (2)
over the (2)
stump jumped, said,
stunk, the
said the (2)
stunk and,
NONWORD
and the

Markov Example, n = 2

» Input: a text file Prefix Suffixes

t:e skunkj.umpec(j:I over t:e St;mi NW NW the

the stumpjurnpe over the skun NW the kunk

the skunk said the stump stunk _ 3

and the stump said the skunk stunk the skunk jumped,
said, the,
stunk

skunk jumped over

jumped over the

over the stump,
skunk
the stump the, jumped,

stunk, said

Output

» h=2:
» n=1: the skunk said the
the skunk the skunk stump stunk and the
jumped over the stump jumped over
skunk stunk the skunk Jjumped

over the skunk stunk

» Note: it’s also
possible to hit the
max before you hit
the last nonword.

the skunk stunk

Markov Data structures

» For the prefixes? Prafix Sliffixes

NW NW the
» For the set of suffixes? | Nw the skunk
the skunk jumped,
said, the,
» To relate them? stunk

skunk jumped over

jumped over the

over the stump,
skunk
the stump the, jumped,

stunk, said

