
Linked List Implementation

Data-structure-palooza

Checkout LinkedLists project from SVN

Understanding the
engineering trade-offs when
storing data

 Efficient ways to store data based on how
we’ll use it

 The main theme for the rest of the course

 So far we’ve seen ArrayLists
◦ Fast addition to end of list

◦ Fast access to any existing position

◦ Slow inserts to and deletes from middle of list

Q1

 What if we have to add/remove data from a
list frequently?

 LinkedLists support this:
◦ Fast insertion and removal of elements

 Once we know where they go

◦ Slow access to arbitrary elements

data

data

data

data

data null

Insertion, per Wikipedia

“random access”

Q2, Q3

 void addFirst(E element)

 void addLast(E element)

 E getFirst()

 E getLast()

 E removeFirst()

 E removeLast()

 What about accessing the middle of the list?

◦ LinkedList<E> implements Iterable<E>

Enhanced For Loop What Compiler Generates

for (String s : list) {

// do something

}

Iterator<String> iter =

list.iterator();

while (iter.hasNext()) {

String s = iter.next();

// do something

}

 A simplified version, with just the essentials

 Won’t implement the java.util.List interface

 Will have the usual linked list behavior
◦ Fast insertion and removal of elements

 Once we know where they go

◦ Slow random access

The only
blood these
contracts are
signed in is
from me
cutting my
hand trying
to open the
d@^mned CD
case.

 Boil down data types (e.g., lists) to their
essential operations

 Choosing a data structure for a project then
becomes:
◦ Identify the operations needed

◦ Identify the abstract data type that most efficient
supports those operations

 Goal: that you understand several basic
abstract data types and when to use them

 Array List

 Linked List

 Stack

 Queue

 Set

 Map

Implementations for all of
these are provided by the Java
Collections Framework in the
java.util package.

Operations
Provided

Array List
Efficiency

Linked List
Efficiency

Random access O(1) O(n)

Add/remove item O(n) O(1)

 A last-in, first-out (LIFO) data structure

 Real-world stacks
◦ Plate dispensers in the cafeteria

◦ Pancakes!

 Some uses:
◦ Tracking paths through a maze

◦ Providing “unlimited undo” in an application

Operations
Provided

Efficiency

Push item O(1)

Pop item O(1)

Implemented by
Stack, LinkedList,
and ArrayDeque in
Java

Q4

 A first-in, first-out (FIFO) data structure

 Real-world queues
◦ Waiting line at the BMV

◦ Character on Star Trek TNG

 Some uses:
◦ Scheduling access to shared resource (e.g., printer)

Operations
Provided

Efficiency

Enqueue item O(1)

Dequeue item O(1)

Implemented by
LinkedList and
ArrayDeque in Java

Q5

 Unordered collections without duplicates

 Real-world sets
◦ Students

◦ Collectibles

 Some uses:
◦ Quickly checking if an item is in a collection

Operations HashSet TreeSet

Add/remove item O(1) O(lg n)

Contains? O(1) O(lg n)

Can hog space Sorts items! Q6

 Associate keys with values

 Real-world “maps”
◦ Dictionary

◦ Phone book

 Some uses:
◦ Associating student ID with transcript

◦ Associating name with high scores

Operations HashMap TreeMap

Insert key-value pair O(1) O(lg n)

Look up value for key O(1) O(lg n)

Can hog space Sorts items by key! Q7

Demonstration

Q8—10

 Input: a text file
the skunk jumped over the stump

the stump jumped over the skunk

the skunk said the stump stunk

and the stump said the skunk stunk

 Output: a randomly
generated list of words
that is “like” the original
input in a well-defined
way

 Gather statistics on word patterns by building
an appropriate data structure

 Use the data structure to generate random
text that follows the discovered patterns

 Input: a text file
the skunk jumped over the stump

the stump jumped over the skunk

the skunk said the stump stunk

and the stump said the skunk stunk

Prefix Suffixes

NONWORD the

the skunk (4),
stump (4)

skunk jumped, said,
stunk, the

jumped over (2)

over the (2)

stump jumped, said,
stunk, the

said the (2)

stunk and,
NONWORD

and the

 Input: a text file
the skunk jumped over the stump

the stump jumped over the skunk

the skunk said the stump stunk

and the stump said the skunk stunk

Prefix Suffixes

NW NW the

NW the skunk

the skunk jumped,
said, the,
stunk

skunk jumped over

jumped over the

over the stump,
skunk

the stump the, jumped,
stunk, said

…

 n=1:

the skunk the skunk

jumped over the

skunk stunk

the skunk stunk

 n=2:

the skunk said the

stump stunk and the

stump jumped over

the skunk jumped

over the skunk stunk

 Note: it’s also
possible to hit the
max before you hit
the last nonword.

 For the prefixes?

 For the set of suffixes?

 To relate them?

Prefix Suffixes

NW NW the

NW the skunk

the skunk jumped,
said, the,
stunk

skunk jumped over

jumped over the

over the stump,
skunk

the stump the, jumped,
stunk, said

…

