
Inheritance recap
Object: the superest class of all

Inheritance and text in GUIs

Check out Inheritance2 from SVN

A quick recap of last session

 Sometimes a new class is a
special case of the concept
represented by another

 Can “borrow” from an
existing class, changing just
what we need

 The new class inherits from
the existing one:
◦ all methods

◦ all instance fields

 class SavingsAccount extends BankAccount {

 // added fields

 // added methods

}

 Say “SavingsAccount is a BankAccount”

 Superclass: BankAccount

 Subclass: SavingsAccount

The “superest”
class in Java

Still means
“is a”

Solid line
shows

inheritance

 Inherit methods unchanged

 Override methods
◦ Declare a new method with same signature to use

instead of superclass method

 Add entirely new methods not in superclass

 ALWAYS inherit all fields unchanged

 Can add entirely new fields not in superclass

DANGER! Don’t use
the same name as a

superclass field!

 Calling superclass method:

◦ super.methodName(args);

 Calling superclass constructor:

◦ super(args);

Must be the first
line of the subclass

constructor

 public—any code can see it

 private—only the class itself can see it

 default (i.e., no modifier)—only code in the
same package can see it

 protected—like default, but subclasses also
have access

The superest class in Java

 Every class in Java inherits from Object

◦ Directly and explicitly:

 public class String extends Object {…}

◦ Directly and implicitly:

 class BankAccount {…}

◦ Indirectly:

 class SavingsAccount extends BankAccount {…}

Q1

 String toString()

 boolean equals(Object otherObject)

 Class getClass()

 Object clone()

 …

Often overridden

Sometimes useful

Often dangerous!

Q2

 Return a concise, human-readable summary
of the object state

 Very useful because it’s called automatically:
◦ During string concatenation

◦ For printing

◦ In the debugger

 getClass().getName() comes in handy here…

Q3

 Should return true when comparing two
objects of same type with same “meaning”

 How?
◦ Must check types—use instanceof

◦ Must compare state—use cast

 Example…

Q4

Review and Practice

 A subclass instance is a superclass instance
◦ Polymorphism still works!

◦ BankAccount ba = new SavingsAccount();
ba.deposit(100);

 But not the other way around!
◦ SavingsAccount sa = new BankAccount();
sa.addInterest();

 Why not?
BOOM!

 Can use:
◦ public void transfer(double amt, BankAccount o){
 withdraw(amount);

 o.deposit(amount);

}

in BankAccount

 To transfer between different accounts:
◦ SavingsAccount sa = …;

◦ CheckingAccount ca = …;

◦ sa.transfer(100, ca);

 If B extends or implements A, we can write

 A x = new B();

Declared type tells which

methods x can access.

Compile-time error if try to

use method not in A.

The actual type tells which

class’ version of the

method to use.

 Can cast to recover methods from B:

 ((B)x).foo()

 Now we can access all of

B’s methods too.

If x isn’t an instance of B,

it gives a run-time error

(class cast exception)

Q5-7, pass in when done, then start reading BallWorlds spec

Meet your partner, then we’ll
code Pulsar together

Team number used in repository name:
http://svn.csse.rose-hulman.edu/repos/csse220-201130-ballworlds-teamXX

Check out BallWorlds from SVN

11,chena1,hirtjd
12,spurrme,nelsonca
13,taos,lyonska
14,filhobc,wilsonam
15,addantnb,shanx
16,cornetcl,caijy
17,luok,eckertzs
18,elswicwj,hopwoocp

n Team

21

22

23

24

25

26

27

28

29

30

Team number used in repository name:
http://svn.csse.rose-hulman.edu/repos/csse220-201130-ballworlds-teamXX

n Team

31

32

33

34

35

36

37

Check out BallWorlds from SVN

Pulsar
Complete team pref. survey
before Wednesday 8 a.m.

Continue with Mover, etc.

Because this is a challenging assignment, we’ll let you
turn BallWorlds in before Friday at 5 p.m. for full
credit. If you miss that deadline, you may turn it in by
Sunday at 5 p.m. for 80% credit.

