
Sierpiński, Recursion and
Efficiency, Mutual Recursion

Checkout Recursion2 project from SVN

 Any method that calls itself
◦ On a simpler problem

◦ So that it makes progress toward completion

 When implementing a recursive definition

 When implementing methods on recursive
data structures

 Where parts of the whole look like smaller
versions of the whole

Q1

 The pros
◦ easy to implement,

◦ easy to understand code,

◦ easy to prove code correct

 The cons
◦ takes more space and time than equivalent

iteration

◦ Why?

 because of function calls

Q2

 Always have a base case that doesn’t recurse

 Make sure recursive case always makes
progress, by solving a smaller problem

 You gotta believe
◦ Trust in the recursive solution

◦ Just consider one step at a time

HW 12 & 13: Sierpinski Triangle

If you actually do this, what really
happens is Douglas Hofstadter
appears and talks to you for eight
hours about strange loops.

 Why does recursive Fibonacci take so long?!?

 Can we fix it?

Q3

 Save every solution we find to sub-problems

 Before recursively computing a solution:
◦ Look it up

◦ If found, use it

◦ Otherwise do the recursive computation

Q4

 A deep discovery of computer science

 In a wide variety of problems we can tune the
solution by varying the amount of storage
space used and the amount of computation
performed

 Studied by “Complexity Theorists”

 Used everyday by software engineers

Q5

 2 or more methods call each other repeatedly
◦ E.g., Hofstadter Female and Male Sequences

◦ How often are the sequences different in the first
50 positions? first 500? first 5,000? first 5,000,000?

Q6

HW 13: Sierpinski Carpet

Q7-8

