
Two-dimensional arrays,

Copying arrays,

Software Engineering Techniques

Check out TwoDArrays from SVN

h
tt

p
:/
/x

k
c
d
.c

o
m

/2
4

2
/

public class TicTacToe {

 private final int rows;

 private final int columns;

 private String[][] board;

 /**

 * Constructs a 3x3 TicTacToe board with all squares blank.

 */

 public TicTacToe() {

 this.rows = 3;

 this.columns = 3;

 this.board = new String[this.rows][this.columns];

 for (int r = 0; r < this.rows; r++) {

 for (int c = 0; c < this.columns; c++) {

 this.board[r][c] = " ";

 }

 }

 }

What is the value of this.board[1][2]

immediately after this statement executes?

Note the (very common) pattern: loop-through-rows,

for each row loop-through columns

Could have used:
this.board.length

Could have used:
this.board[r].length

Q1-2

Complete the TODO items in
TicTacToe and TicTacToeTest

They’re numbered; do ‘em in
order.

http://xkcd.com/85/

 Assignment uses reference values:
◦ double[] data = new double[4];
for (int i = 0; i < data.length; i++) {

 data[i] = i * i;

}

◦ double[] pieces = data;

◦ foo.someMethod(data);

pieces

public void someMethod(double[] d) {

 this.dataInMethod = d;

 ...

}

0 9 1 4 data

d

dataInMethod This makes the field a

reference to (NOT a copy

of) a list that exists

elsewhere in the code.

Think carefully about

whether you want this or

a clone (copy).

Q3-5

 You can copy an array in any of several ways:

1. Write an explicit loop, copying the elements one by one

2. Use the clone method that all arrays have

 newArray = oldArray.clone();

3. Use the System.arraycopy method:

 System.arraycopy(oldArray, 0, newArray, 0,

 oldArray.length);

4. Use the Arrays.copyOf method:

 newArray = Arrays.copyOf(

 oldArray, oldArray.length);

Starting position in oldArray

Starting position in newArray

Number of characters to copy

The key point is that all of these
except possibly the first make
shallow copies – see next slide

 Can copy whole arrays in several ways:
◦ double[] data = new double[4];
 ...

 pieces = data;

◦ double[] pizzas = data.clone();

◦ JLabel[] labels = new JLabel[4];
 ...

JLabel[] moreLabels = labels.clone();

0
pizzas

1 4 9

0 4 9 1

data

pieces

labels

hello
ciao

moreLabels
Q6-8

 Consider an ElectionSimulator:
 Instead of storing:

◦ ArrayList<String> stateNames;
ArrayList<Integer> electoralVotes;

ArrayList<Double> percentOfVotersWhoPlanToVoteForA;
ArrayList<Double> percentOfVotersWhoPlanToVoteForB;

 We used:

◦ ArrayList<State> states;
and put the 4 pieces of data inside a State object

 Why bother?

Q9

 Array or ArrayList, that is the question

 General rule: use ArrayList
◦ Less error-prone because it grows as needed

◦ More powerful because it has methods

◦ More general because it can be extended

 Exceptions:
◦ Lots of primitive data in time critical code

◦ Two (or more) dimensional arrays

Q10

 Regression testing

 Pair programming

 Team version control

 Keep and run old test cases

 Create test cases for new bugs
◦ Like antibodies, to keep a bug from coming back

 Remember:
◦ You can right-click the project in Eclipse to run all

the unit tests

Q11-12

 Working in pairs on a single computer
◦ One person, the driver, uses the keyboard

◦ The other person, the navigator, watches, thinks,
and takes notes

 For hard (or new) problems, this technique
◦ Reduces number of errors

◦ Saves time in the long run

 Works best when partners have similar skill
level
◦ If not, then student with most experience should

navigate, while the other student drives.

 Always:
◦ Update before working

◦ Update again before committing

◦ Commit often and with good messages

 Communicate with teammates so you don’t
edit the same code simultaneously
◦ Pair programming eliminates this issue

1. A new cell is born on an
empty square if it has
exactly 3 neighbor cells

2. A cell dies of
overcrowding if it is
surrounded by 4 or
more neighbor cells

3. A cells dies of
loneliness if it has just
0 or 1 neighbor cells

x

Cell

Neighbors

Team number used in repository name:
http://svn.csse.rose-hulman.edu/repos/csse220-201130-life-teamXX

Check out GameOfLife from SVN

11,filhobc,hirtjd
12,taos,luok
13,addantnb,caijy
14,hopwoocp,lyonska
15,eckertzs,shanx
16,wilsonam,cornetcl
17,nelsonca,chena1
18,spurrme,elswicwj

Team number used in repository name:
http://svn.csse.rose-hulman.edu/repos/csse220-201130-life-teamXX

Check out GameOfLife from SVN

21,amesen,solorzaa,mehrinla
22,lawrener,tilleraj
23,fengk,cooperdl
24,vassardm,rybickcb
25,zhenw,whitemrj
26,myersem,hazelrtj
27,senatwj,oliverr
28,haydr,finnelhn

 Work with your partner
on the Game of Life project
◦ Get help as needed

◦ The TODOs are numbered – do them in the
indicated order.

◦ Follow the practices of pair programming!

 Don’t work without your partner!

 Due Thursday of next week

