
Arrays, ArrayLists,
Wrapper Classes, Auto-boxing,

Enhanced for loop

Check out ArraysAndLists from SVN

 Tuesday, March 29, in-class

 Over chapters 1-7

 We’ll review on Monday, March 28

 See session 10 schedule for Exam 1 samples

If there’s anything that you’re
confused about, get it straight this

week. Come see me for help!
Q1

 Group a collection of objects under a single
name

 Elements referred to by their position, or
index, in the collection (0, 1, 2, …)

 Syntax for declaring: ElementType[] name

 Examples:

◦ A local variable: double[] averages;

◦ Parameters: public int max(int[] values) {…}

◦ A field: private Investment[] mutualFunds;

 Syntax for allocating:
 new ElementType[length]

 Creates space to hold values

 Sets values to defaults
◦ 0 for number types

◦ false for boolean type

◦ null for object types

 Examples:
◦ double[] polls = new double[50];

◦ int[] elecVotes = new int[50];

◦ Dog[] dogs = new Dog[50];

Don’t forget
this step!

This does NOT
construct any
Dog’s. It just

allocates space for
referring to Dog’s
(all the Dog’s start

out as null)

Q2

 Reading:
◦ double exp = polls[42] * elecVotes[42];

 Writing:
◦ elecVotes[37] = 11;

 Index numbers run from 0 to array length – 1

 Getting array length: elecVotes.length

Reads the element
with index 42.

Sets the value
in slot 37.

No parentheses, array
length is (like) a field Q3-Q4

Arrays… Java C Python

have fixed length yes yes no

are initialized to default
values

yes no n/a

track their own length yes no yes

trying to access ―out of
bounds‖ stops program
before worse things happen

yes no yes

 Investigating the Law of Large Numbers

 A simulation using dice

 Design

 Implementation (together)

 Begin the RollingDice program for HW8 (in
ArraysAndLists)

 ArrayLists to the rescue

 Example:

◦ ArrayList<State> states = new ArrayList<State>();

states.add(new State(“Indiana”, 11, .484, .497));

 ArrayList is a generic class
◦ Type in <brackets> is called a type parameter

Element type

Variable type

Adds new element
to end of list

Constructs new,
empty list

Q5-Q6

 Type parameter can’t be a primitive type
◦ Not: ArrayList<int> runs;

◦ But: ArrayList<Integer> runs;

 Use get method to read elements
◦ Not: runs[12]

◦ But: runs.get(12)

 Use size() not length
◦ Not: runs.length

◦ But: runs.size()

 Add to end:

◦ victories.add(new WorldSeries(2011));

 Overwrite existing element:

◦ victories.set(0,new WorldSeries(1907));

 Insert in the middle:

◦ victories.add(1, new WorldSeries(1908));

◦ Pushes elements at indexes 1 and higher up one

 Can also remove:

◦ victories.remove(victories.size() - 1)

Continue RollingDice

 Problem:
◦ ArrayList’s only hold objects

◦ Primitive types aren’t objects

 Solution:
◦ Wrapper classes—instances are

used to ―turn‖ primitive types
into objects

◦ Primitive value is stored in a
field inside the object

Primitive Wrapper

byte Byte

boolean Boolean

char Character

double Double

float Float

int Integer

long Long

short Short

Q7

 Auto-boxing: automatically enclosing a primitive
type in a wrapper object when needed

 Example:
◦ You write: Integer m = 6;

◦ Java does: Integer m = new Integer(6);

◦ You write: Integer answer = m * 7;

◦ Java does: int temp = m.intValue() * 7;
 Integer answer = new Integer(temp);

 Just have to remember to use wrapper class
for list element type

 Example:
◦ ArrayList<Integer> runs =
 new ArrayList<Integer>();

runs.add(9); // 9 is auto-boxed

◦ int r = runs.get(0); // result is unboxed

 Old school
double scores[] = …

double sum = 0.0;

for (int i=0; i < scores.length; i++) {

 sum += scores[i];

}

 New, whiz-bang, enhanced for loop
double scores[] = …

double sum = 0.0;

for (double score : scores) {

 sum += score;

}

 No index
variable (easy,
but limited in 2
respects)

 Gives a name
(score here) to
each element Say ―in‖

 ArrayList<State> states = …

int total = 0;

for (State state : states) {

 total += state.getElectoralVotes();

}

Q8

Finish RollingDice, then
continue on HW 10.

Q9-Q10

