
Console Input, Text Formatting,
Decision Statements and Expressions

Check out Decisions from SVN

 How to see them (next slide = What to do with them)

1. Update your homework project: HW1 in this case

 Right-click the project and select Team ⇒Update to HEAD

2. Examine your Tasks view

 One of the tabs at the bottom of Eclipse

 Use Window ⇒ Show View ⇒ Other ⇒ General ⇒Tasks if needed

 Your Tasks view has been configured to show all comments with
TODO, FIXME and CONSIDER in them.

 If you want to use other tags too, it’s easy: Look at
Window ⇒ Preferences ⇒ Java ⇒ Compiler ⇒ Task Tags

3. Each CONSIDER “task” is a place where the grader has
suggested an improvement to your code

 The grader should make a CONSIDER for every place where the
grader deducted points

 Each homework has a link to its grading rubric.

 Note especially the link in the grading rubric to
General Instructions for Grading Programs

 What to do with them: Earn Back!

◦ Within 3 days of receiving your project back, at each CONSIDER:

1. Correct the error.

2. Change the word CONSIDER to REGRADE

◦ The grader will re-grade any (but only) such tags. If you correct
all your errors, you earn back all the points that were deducted!

◦ Some assignments will allow Earn Back, some won’t.
Earn Back is available for HW1.

◦ Earn Back is a privilege – don’t abuse it. Put forth your “good faith”
effort on the project and reserve Earn Back for errors that you did
not anticipate.

◦ If the comment from the grader does not make clear what your
error is:

 First look at the grading rubric for the homework (and the link therein
to General Instructions for Grading Programs).

 Then ask questions as needed.

 Some common errors from HW 1:

◦ Leaving behind a TODO (either not doing the TODO or doing it but
not erasing the TODO comment itself)

◦ Leaving behind compiler warning messages

◦ Failing to put your own name as author of your classes

◦ Using variable names that are not self-documenting

◦ Not using the required names for the SeriesSum class and its
method

◦ Various formatting errors that Control-Shift-F corrects

◦ Declaring a for-loop variable outside of the for-loop

◦ Using double as the return type for factorial or seriesSum

 In general, use int or long for exact arithmetic. Using double opens the
door for roundoff error.

◦ Not an error, just a comment: good practice to precede static
fields with the class name, e.g. Factorial.MAX not just MAX

 String Input and Output

 Quick review of if statements

 == vs. equals()

 Selection operator, ? :

 Optional: switch and enumerations

 In Python:

◦ “This is a string”

◦ „and so is this‟

 In Java:

◦ “This is a string”

◦ This is a character: „R‟

◦ ‘This is an error’

 Can use charAt(index)

 Example:

String message = "Rose-Hulman";

for (int i=0; i < message.length(); i++) {

System.out.println(message.charAt(i));

}

 charAt() returns a 16-bit char value*

 Exercise: Work on TODO items in
StringsAndChars.java

* Unfortunately there are more than 216 (65536) symbols
in the known written languages. See Character API

docs for the sordid details.

 Creating a Scanner object:
◦ Scanner inputScanner =

new Scanner(System.in);

 Defines methods to read from keyboard:
◦ inputScanner.nextInt()

◦ inputScanner.nextDouble()

◦ inputScanner.nextLine()

◦ inputScanner.next()

 Exercise: Look at ScannerExample.java
◦ Add println’s to the code to prompt the user for

the values to be entered

Tables from Horstmann, Big Java (3e),
John Wiley & Sons, Copyright 2007

More options than in C.
I used a couple in
today’s examples.
Can you find them?

Q1 – Q2

 Printing:
◦ System.out.printf(“%5.2f%n”, Math.PI);

 Formatting strings:
◦ String message =

String.format(“%5.2f%n”, Math.PI);

 Display dialog box messages
◦ JOptionPane.showMessageDialog(null, message);

int letterCount = 0;

int upperCaseCount = 0;

String switchedCase = "";

for (int i = 0; i < message.length(); i++) {

char nextChar = message.charAt(i);

if (Character.isLetter(nextChar)) {

letterCount++;

}

if (Character.isUpperCase(nextChar)) {

upperCaseCount++;

switchedCase += Character.toLowerCase(nextChar);

} else if (Character.isLowerCase(nextChar)){

switchedCase += Character.toUpperCase(nextChar);

} else {

switchedCase += nextChar;

}

}

 Exercise: EmailValidator
◦ Use a Scanner object

◦ Prompt for user’s email address

◦ Prompt for it again

◦ Compare the two entries and report whether or not
they match

 Notice anything strange?

 In Java:
◦ o1 == o2 compares values

◦ o1.equals(o2) compares the internal state of
objects (thus, their fields)

 Remember: variables of class type store
reference values

 How should you compare the email addresses
in the exercise?

Q3 – Q4

 Statements: used only for their side effects
◦ Changes they make to stored values or control flow

 Expressions: calculate values

 Many statements contain expressions:

◦ if (amount <= balance) {
balance -= amount;

} else {

balance -= OVERDRAFT_FEE;

}

 Let us choose between two possible values for
an expression

 For example,
◦ balance -= (amount <= balance ? amount : OVERDRAFT_FEE);

 is equivalent to:
if (amount <= balance) {

balance -= amount;

} else {

balance -= OVERDRAFT_FEE;

}

 Also called ternary or selection operator (Why?)

Q5

 Comparison operators: <, <=, >, >=, !=, ==

 Comparing objects: equals(), compareTo()

 Boolean operators:

◦ and: &&

◦ or: ||

◦ not: !

Q6

 A common pattern in Java:
public boolean isFoo() {

… // return true or false depending on

// the Foo-ness of this object

}

Q7

 Black box testing: testing without regard to
internal structure of program
◦ For example, user testing

 White box testing: writing tests based on
knowledge of how code is implemented
◦ For example, unit testing

 Test coverage: the percentage of the source
code executed by all the tests taken together
◦ Want high test coverage

◦ Low test coverage can happen when we miss
branches of switch or if statements

Q8

The next five slides on switch
and enumerations are
optional. Do the Bid exercise
if you’re interested. See the
book or the Google for more
info. on switch and enum.

char grade = …

int points;

switch (grade) {

case „A‟:

points = 95;

break;

case „B‟:

points = 85;

break;

…

default:

points = 0;

}

Can switch on
integer, character,

or “enumerated
constant”

Don’t forget the
breaks!

 Specify named sets:
public enum Suit {

CLUBS, SPADES, DIAMONDS, HEARTS

}

 Store values from set:
Card c = new Card(2, CLUBS);‟

 Then switch on them:
switch (this.suit) {

case CLUBS:

case SPADES:

return “black”;

default:

return “red”;

}

Why no break
here?

Why no break
here?

 Implement a class Bid
◦ Constructor should take a “trump” Suit and an

integer representing a number of “tricks”

◦ Test and implement a method, getValue(), that
returns the point value of the bid, or 0 if the bid
isn’t legal. See table for values of the legal bids.

Spades Clubs Diamonds Hearts No Trump

6 tricks 40 60 80 100 120

7 tricks 140 160 180 200 220

8 tricks 240 260 280 300 320

9 tricks 340 360 380 400 420

10 tricks 440 460 480 500 520

switch (bidSuit) {

case CLUBS:

case SPADES:

return “black”;

default:

return “red”;

}

Suit enum is provided in the repository!

http://en.wikipedia.org/wiki/500_(card_game)

 Live-coding:
◦ Test and implement isValid() method for Bid

 JUnit has test methods assertTrue() and
assertFalse() that will be handy

◦ Change getValue(): return 0 if isValid() is false

 Study your code for Bid and BidTests

 Do you have 100% test coverage of the
methods?

◦ getValue()

◦ isValid()

 Add tests until you have 100% test coverage

Hand in quiz.

Work on Homework 6: Grade
and CubicPlot

Q9 – Q10

