
API Documentation, Unit Tests, and
Object References

Implementing Classes in Java, using

Documented Stubs, Test-First Programming

Check out JavadocsAndUnitTesting and
WordGames from SVN

API Documentation, Docs in
Eclipse, Writing your own Docs

 What’s an API?
◦ Application Programming Interface

 The Java API on-line
◦ Google for: java api documentation 6

◦ Or go to: http://java.sun.com/javase/6/docs/api/

◦ Also hopefully on your computer at

C:\Program Files\Java\jdk1.6.0_14\docs\api\index.html

You need the 6 to get

the current version of Java

Q1

http://java.sun.com/javase/6/docs/api/
C:/Program Files/Java/jdk1.6.0_14/docs/api/index.html
C:/Program Files/Java/jdk1.6.0_14/docs/api/index.html
C:/Program Files/Java/jdk1.6.0_14/docs/api/index.html
C:/Program Files/Java/jdk1.6.0_14/docs/api/index.html
C:/Program Files/Java/jdk1.6.0_14/docs/api/index.html
C:/Program Files/Java/jdk1.6.0_14/docs/api/index.html
C:/Program Files/Java/jdk1.6.0_14/docs/api/index.html
C:/Program Files/Java/jdk1.6.0_14/docs/api/index.html
C:/Program Files/Java/jdk1.6.0_14/docs/api/index.html
C:/Program Files/Java/jdk1.6.0_14/docs/api/index.html
C:/Program Files/Java/jdk1.6.0_14/docs/api/index.html
C:/Program Files/Java/jdk1.6.0_14/docs/api/index.html
C:/Program Files/Java/jdk1.6.0_14/docs/api/index.html

 Setting up Java API documentation in Eclipse
◦ Should be done already,

◦ If the next steps don’t work for you, instructions
are in today’s homework

 Using the API documentation in Eclipse
◦ Hover text

◦ Open external documentation (Shift-F2)

 Written in special comments: /** … */

 Can come before:

◦ Class declarations

◦ Field declarations

◦ Constructor declarations

◦ Method declarations

 Eclipse is your friend!

◦ It will generate Javadoc comments automatically

◦ It will notice when you start typing a Javadoc
comment

Add javadoc comments to
StringMethodsPractice

• Use Quick Fix!
(click on light bulb)

 Don’t try to memorize the Java libraries
◦ Nearly 9000 classes and packages!

◦ You’ll learn them over time

 Get in the habit of writing the javadocs before
implementing the methods
◦ It will help you think before doing, a vital software

development skill

◦ This is called programming with documented stubs

◦ I’ll try to model this. If I don’t, call me on it!

Test-driven Development,
unit testing and JUnit

 Using code that you write to test other code
◦ Focused on testing individual pieces of code (units) in

isolation

 Individual methods

 Individual classes

 Why would software engineers do unit testing?

Q2

 JUnit is a unit testing framework
◦ A framework is a collection of classes to be used

in another program.

◦ Does much of the work for us!

 JUnit was written by
◦ Erich Gamma

◦ Kent Beck

 Open-source software

 Now used by millions of Java developers

Q3

 MoveTester in Big Java shows how to write
tests in plain Java

 Look at JUnitMoveTester in today’s repository
◦ Shows the same test in JUnit

◦ Let’s look at the comments and code together…

 Test ―boundary conditions‖
◦ Intersection points: -40℃ == -40℉

◦ Zero values: 0℃ == 32℉

◦ Empty strings

 Test known values: 100℃ == 212℉
◦ But not too many

 Tests things that might go wrong
◦ Unexpected user input: ―zero‖ when 0 is expected

 Vary things that are ―important‖ to the code
◦ String length if method depends on it

◦ String case if method manipulates that

Important Slide: Use this
as a reference!

Unit test shout, whisper, and
holleWerld using ―interesting‖
test cases

Differences between primitive
types and object types in Java

 Variables of number type store values

 Variables of class type store references
◦ A reference is like a pointer in C, except

 Java keeps us from screwing up

 No & and * to worry about
(and the people say, ―Amen‖)

 Consider:

1. int x = 10;

2. int y = 20;

3. Rectangle box = new Rectangle(x, y, 5, 5);

10x

20y

5

10

20

5

box

Q4

 Actual value for number types

 Reference value for object types
◦ The actual object is not copied

◦ The reference value (―the pointer‖) is copied

 Consider:
1. int x = 10;

2. int y = x;

3. y = 20;

4. Rectangle box = new Rectangle(5, 6, 7, 8);

5. Rectangle box2 = box;

6. box2.translate(4, 4);

10x

10y 8

5

6

7
box

× 20
box2

× 9

× 10

Q5 – Q6

Separating implementation
details from how an object is
used

 Encapsulation—separating implementation
details from how an object is used
◦ Client code sees a black box with a known interface

◦ Implementation can change without changing client

Functions Objects

Black box
exposes

Function
signature

Constructor and
method
signatures

Encapsulated
inside the box

Operation
implementation

Data storage and
operation
implementation

Q7 – Q8

But surely I owe you an accurate answer!

 An interface is a real construct in OOP
languages
◦ It’s just a list of method signatures (no

implementations)

 If a class implements an interface, it must
implement all those methods

 We’ll use them in today’s assignment

1. Create the (initially empty) class

◦ File ⇒ New ⇒ Class

2. Write documented stubs for the public interface of the class

3. Implement the class:

◦ Determine and implement instance fields

◦ Implement constructors and methods, adding private methods and
additional instance fields as needed

4. Test the class

3. Test and implement each
constructor and method
• Write the test cases BEFORE

implementing the constructor/method

WordGames Shouter

Q9 – Q10

 Censor: given a string inputString, produces a new string by
replacing each occurrence of charToCensor with a ―*‖ (an
asterisk).

 How do you deal with charToCensor ?

◦ Can it be a parameter of transform?

 No, that violates the StringTransformable interface

◦ Can it be a local variable of transform?

 No, it needs to live for the entire lifetime of the Censor.

◦ What’s left?

 Answer: It is a field ! (What is a sensible name for the field?)

 How do you initialize the field for charToCensor ?

◦ Answer: by using Censor’s constructors!

WordGames Censor

Q11 – Q18

Continue with homework if
time permits

We will make additional slides
with sample code available to
you after class

Q19 – Q20

