
9/14/2010

1

Chapter 7 – Arrays and Array Lists

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• To become familiar with using arrays and array lists

• To learn about wrapper classes, auto-boxing and the

generalized for loop

• To study common array algorithms

• To learn how to use two-dimensional arrays

• To understand when to choose array lists and arrays in your

programs

• To implement partially filled arrays

T To understand the concept of regression testing

Chapter Goals

9/14/2010

2

• Array: Sequence of values of the same type

• Construct array:

new double[10]

• Store in variable of type double[]:

double[] data = new double[10];

• When array is created, all values are initialized depending on

array type:

• Numbers: 0

• Boolean: false

• Object References: null

Arrays

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Arrays

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

9/14/2010

3

Arrays

Use [] to access an element:

values[2] = 29.95;

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Using the value stored:

System.out.println("The value of this data item is "

+ values[2]);

• Get array length as values.length (Not a method!)

• Index values range from 0 to length - 1

• Accessing a nonexistent element results in a bounds error:

double[] values = new double[10];

values[10] = 29.95; // ERROR

• Limitation: Arrays have fixed length

Arrays

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

9/14/2010

4

Declaring Arrays

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Syntax 7.1 Arrays

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

9/14/2010

5

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

What elements does the data array contain after the following

statements?

double[] values = new double[10];

for (int i = 0; i < values.length; i++)

values[i] = i * i;

Answer: 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, but not 100

Self Check 7.1

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

What do the following program segments print? Or, if there is an

error, describe the error and specify whether it is detected at

compile-time or at run-time.

a) double[] a = new double[10];

System.out.println(a[0]);

b) double[] b = new double[10];

System.out.println(b[10]);

c) double[] c;

System.out.println(c[0]);

Answer:

a) 0

b) a run-time error: array index out of bounds

c) a compile-time error: c is not initialized

Self Check 7.2

9/14/2010

6

// Don't do this

int[] accountNumbers;

double[] balances;

Make Parallel Arrays into Arrays of Objects

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Avoid parallel arrays by changing them into arrays of objects:

BankAccount[] accounts;

Make Parallel Arrays into Arrays of Objects

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

9/14/2010

7

Array Lists

• ArrayList class manages a sequence of objects

• Can grow and shrink as needed

• ArrayList class supplies methods for many common tasks,

such as inserting and removing elements

• ArrayList is a generic class:

ArrayList<T>

collects objects of type parameter T:

ArrayList<String> names = new ArrayList<String>();

names.add("Emily");

names.add("Bob");

names.add("Cindy");

• size method yields number of elements

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

To add an object to the end of the array list, use the add

method:

names.add("Emily");

names.add("Bob");

names.add("Cindy");

Adding Elements

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

9/14/2010

8

• To obtain the value an element at an index, use the get

method

• Index starts at 0

• String name = names.get(2);

// gets the third element of the array list

• Bounds error if index is out of range

• Most common bounds error:

int i = names.size();

name = names.get(i); // Error

// legal index values are 0 ... i-1

Retrieving Array List Elements

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• To set an element to a new value, use the set method:

names.set(2, "Carolyn");

Setting Elements

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

9/14/2010

9

• To remove an element at an index, use the remove method:

names.remove(1);

Removing Elements

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

names.add("Emily");

names.add("Bob");

names.add("Cindy");

names.set(2, "Carolyn");

names.add(1, "Ann");

names.remove(1);

Adding and Removing Elements

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

9/14/2010

10

Working with Array Lists

ArrayList<String> names =

new ArrayList<String>();

Constructs an empty array list that can hold

strings.

names.add("Ann");

names.add("Cindy");

Adds elements to the end.

System.out.println(names); Prints [Ann, Cindy].

names.add(1, "Bob"); Inserts an element at index 1. names is now

[Ann, Bob, Cindy].

names.remove(0); Removes the element at index 0. names is

now [Bob, Cindy].

names.set(0, "Bill"); Replaces an element with a different value.
names is now [Bill, Cindy].

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Working with Array Lists (cont.)

String name = names.get(i); Gets an element.

String last =

names.get(names.size() - 1);

Gets the last element.

ArrayList<Integer> squares =

new ArrayList<Integer>();

for (int i = 0; i < 10; i++)

{

squares.add(i * i);

}

Constructs an array list holding the first ten

squares.

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

9/14/2010

11

Syntax 7.2 Array Lists

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

How do you construct an array of 10 strings? An array list of

strings?

Answer:

new String[10];

new ArrayList<String>();

Self Check 7.3

9/14/2010

12

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

What is the content of names after the following statements?

ArrayList<String> names = new ArrayList<String>();

names.add("A");

names.add(0, "B");

names.add("C");

names.remove(1);

Answer: names contains the strings "B" and "C" at

positions 0 and 1

Self Check 7.4

• For each primitive type there is a wrapper class for storing

values of that type:

Double d = new Double(29.95);

Wrapper Classes

• Wrapper objects can be used anywhere that objects are
required instead of primitive type values:

ArrayList<Double> values= new ArrayList<Double>();

data.add(29.95);

double x = data.get(0);
Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

9/14/2010

13

There are wrapper classes for all eight primitive types:

Wrappers

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Auto-boxing: Automatic conversion between primitive types

and the corresponding wrapper classes:

Double d = 29.95; // auto-boxing; same as

// Double d = new Double(29.95);

double x = d; // auto-unboxing; same as

// double x = d.doubleValue();

• Auto-boxing even works inside arithmetic expressions:

d = d + 1;

Means:

• auto-unbox d into a double

• add 1

• auto-box the result into a new Double

• store a reference to the newly created wrapper object in d

Auto-boxing

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

9/14/2010

14

• To collect numbers in an array list, use the wrapper type as the

type parameter, and then rely on auto-boxing:

ArrayList<Double> values = new ArrayList<Double>();

values.add(29.95);

double x = values.get(0);

• Storing wrapped numbers is quite inefficient

• Acceptable if you only collect a few numbers

• Use arrays for long sequences of numbers or characters

Auto-boxing and Array Lists

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

What is the difference between the types double and Double?

Answer: double is one of the eight primitive types. Double is

a class type.

Self Check 7.5

9/14/2010

15

• Traverses all elements of a collection:

double[] values = ...;

double sum = 0;

for (double element : values)

{

sum = sum + element;

}

• Read the loop as ―for each element in values‖

• Traditional alternative:

double[] values = ...;

double sum = 0;

for (int i = 0; i < values.length; i++)

{

double element = values[i];

sum = sum + element;

}

The Enhanced for Loop

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Works for ArrayLists too:

ArrayList<BankAccount> accounts = ...;

double sum = 0;

for (BankAccount account : accounts)

{

sum = sum + aaccount.getBalance();

}

• Equivalent to the following ordinary for loop:

double sum = 0;

for (int i = 0; i < accounts.size(); i++)

{

BankAccount account = accounts.get(i);

sum = sum + account.getBalance();

}

The Enhanced for Loop

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

9/14/2010

16

• The ―for each loop‖ does not allow you to modify the contents of

an array:

for (double element : values)

{

element = 0;

// ERROR—this assignment does not

// modify array element

}

• Must use an ordinary for loop:

for (int i = 0; i < values.length; i++)

{

values[i] = 0; // OK

}

The Enhanced for Loop

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Syntax 7.3 The “for each” Loop

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

9/14/2010

17

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Write a ―for each‖ loop that prints all elements in the array values.

Answer:

for (double element : values)

System.out.println(element);

Self Check 7.7

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

What does this ―for each‖ loop do?

int counter = 0;

for (BankAccount a : accounts)

{

if (a.getBalance() == 0) { counter++; }

}

Answer: It counts how many accounts have a zero

balance.

Self Check 7.8

9/14/2010

18

• Array length = maximum number of elements in array

• Usually, array is partially filled

• Need companion variable to keep track of current size

• Uniform naming convention:

final int VALUES_LENGTH = 100;

double[] values = new double[VALUES_LENGTH];

int valuesSize = 0;

• Update valuesSize as array is filled:

values[valuesSize] = x;

valuesSize++;

Partially Filled Arrays

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Partially Filled Arrays

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

9/14/2010

19

• Example: Read numbers into a partially filled array:

int valuesSize = 0;

Scanner in = new Scanner(System.in);

while (in.hasNextDouble())

{

if (valuesSize < values.length)

{

values[valuesSize] = in.nextDouble();

valuesSize++;

}

}

• To process the gathered array elements, use the companion

variable, not the array length:

for (int i = 0; i < valuesSize; i++)

{

System.out.println(values[i]);

}

Partially Filled Arrays

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Write a loop to print the elements of the partially filled array
values in reverse order, starting with the last element.

Answer:

for (int i = valuesSize - 1; i >= 0; i--)

System.out.println(values[i]);

Self Check 7.9

9/14/2010

20

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

How do you remove the last element of the partially filled array
values?

Answer:

valuesSize--;

Self Check 7.10

• Initialize a candidate with the starting element

• Compare candidate with remaining elements

• Update it if you find a larger or smaller value

Common Array Algorithm: Finding the Maximum or

Minimum

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

9/14/2010

21

• Example: Find the account with the largest balance in

the bank:

BankAccount largestYet = accounts.get(0);

for (int i = 1; i < accounts.size(); i++)

{

BankAccount a = accounts.get(i);

if (a.getBalance() > largestYet.getBalance())

largestYet = a;

}

return largestYet;

• Works only if there is at least one element in the array
list — if list is empty, return null:

if (accounts.size() == 0) return null;

BankAccount largestYet = accounts.get(0);

...

Common Array Algorithm: Finding the Maximum or

Minimum

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Check all elements until you have found a match

• Example: Determine whether there is a bank account with a

particular account number in the bank:

public class Bank

{

public BankAccount find(int accountNumber)

{

for (BankAccount account : accounts)

{

if (account.getAccountNumber() == accountNumber)

// Found a match

return account;

}

return null; // No match in the entire array list

}

...

}

Common Array Algorithm: Searching for a Value

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

9/14/2010

22

• The process of checking all elements until you have found a

match is called a linear search

Common Array Algorithm: Searching for a Value

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Copying an array variable yields a second reference to the

same array:

double[] values = new double[6];

. . . // Fill array

double[] prices = values;

Common Array Algorithm: Copying an Array

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

9/14/2010

23

• To make a true copy of an array, call the Arrays.copyOf

method:

double[] prices = Arrays.copyOf(values, values.length);

Common Array Algorithm: Copying an Array

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• To grow an array that has run out of space, use the
Arrays.copyOf method:

values = Arrays.copyOf(values, 2 * values.length);

Common Array Algorithm: Copying an Array

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

9/14/2010

24

• Example: Read an arbitrarily long sequence numbers into an

array, without running out of space:

int valuesSize = 0;

while (in.hasNextDouble())

{

if (valuesSize == values.length)

values = Arrays.copyOf(values, 2 * values.length);

values[valuesSize] = in.nextDouble();

valuesSize++;

}

Common Array Algorithm: Growing an Array

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Test suite: a set of tests for repeated testing

• Cycling: bug that is fixed but reappears in later versions

• Regression testing: repeating previous tests to ensure that

known failures of prior versions do not appear in new versions

Regression Testing

9/14/2010

25

• When constructing a two-dimensional array, specify how

many rows and columns are needed:
final int ROWS = 3;

final int COLUMNS = 3;

String[][] board = new String[ROWS][COLUMNS];

• Access elements with an index pair:

board[1][1] = "x";

board[2][1] = "o";

Two-Dimensional Arrays

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• It is common to use two nested loops when filling or searching:

for (int i = 0; i < ROWS; i++)

for (int j = 0; j < COLUMNS; j++)

board[i][j] = " ";

Traversing Two-Dimensional Arrays

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

9/14/2010

26

• You can also recover the array dimensions from the array

variable:

• board.length is the number of rows

• board[0].length is the number of columns

• Rewrite the loop for filling the tic-tac-toe board:

for (int i = 0; i < board.length; i++)

for (int j = 0; j < board[0].length; j++)

board[i][j] = " ";

Traversing Two-Dimensional Arrays

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

