
11/3/2010

1

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

–

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• To understand how multiple threads can execute in parallel

• To learn how to implement threads

11/3/2010

2

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Thread: a program unit that is executed independently of other

parts of the program

• The Java Virtual Machine executes each thread in the program

for a short amount of time

• This gives the impression of parallel execution

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Implement a class that implements the Runnable interface:

public interface Runnable

{

 void run();

}

• Place the code for your task into the run method of your class:

public class MyRunnable implements Runnable

{

 public void run()

 {

 Task statements

 ...

 }

}

11/3/2010

3

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Create an object of your subclass:

Runnable r = new MyRunnable();

• Construct a Thread object from the runnable object:

Thread t = new Thread(r);

• Call the start method to start the thread:

t.start();

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

A program to print a time stamp and “Hello World” once a second

for ten seconds:

Mon Dec 28 23:12:03 PST 2009 Hello, World!

Mon Dec 28 23:12:04 PST 2009 Hello, World!

Mon Dec 28 23:12:05 PST 2009 Hello, World!

Mon Dec 28 23:12:06 PST 2009 Hello, World!

Mon Dec 28 23:12:07 PST 2009 Hello, World!

Mon Dec 28 23:12:08 PST 2009 Hello, World!

Mon Dec 28 23:12:09 PST 2009 Hello, World!

Mon Dec 28 23:12:10 PST 2009 Hello, World!

Mon Dec 28 23:12:11 PST 2009 Hello, World!

Mon Dec 28 23:12:12 PST 2009 Hello, World!

11/3/2010

4

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

GreetingRunnable

public class GreetingRunnable implements Runnable

{

 private String greeting;

 public GreetingRunnable(String aGreeting)

 {

 greeting = aGreeting;

 }

 public void run()

 {

 Task statements

 ...

 }

}

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

GreetingRunnable

• Print a time stamp

• Print the greeting

• Wait a second

11/3/2010

5

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

GreetingRunnable

• We can get the date and time by constructing a Date object:

 Date now = new Date();

• To wait a second, use the sleep method of the Thread class:

 sleep(milliseconds)

• A sleeping thread can generate an InterruptedException

• Catch the exception

• Terminate the thread

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

•sleep puts current thread to sleep for given number of

milliseconds:

 Thread.sleep(milliseconds)

• When a thread is interrupted, most common response is to
terminate run

11/3/2010

6

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

 run

public void run()

{

 try

 {

 Task statements

 }

 catch (InterruptedException exception)

 {

 }

 Clean up, if necessary

}

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Construct an object of your runnable class:

 Runnable t = new GreetingRunnable("Hello World");

• Then construct a thread and call the start method:

 Thread t = new Thread(r);

t.start();

11/3/2010

7

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Program Run:
Mon Dec 28 12:04:46 PST 2009 Hello, World!

Mon Dec 28 12:04:46 PST 2009 Goodbye, World!

Mon Dec 28 12:04:47 PST 2009 Hello, World!

Mon Dec 28 12:04:47 PST 2009 Goodbye, World!

Mon Dec 28 12:04:48 PST 2009 Hello, World!

Mon Dec 28 12:04:48 PST 2009 Goodbye, World!

Mon Dec 28 12:04:49 PST 2009 Hello, World!

Mon Dec 28 12:04:49 PST 2009 Goodbye, World!

Mon Dec 28 12:04:50 PST 2009 Hello, World!

Mon Dec 28 12:04:50 PST 2009 Goodbye, World!

Mon Dec 28 12:04:51 PST 2009 Hello, World!

Mon Dec 28 12:04:51 PST 2009 Goodbye, World!

Mon Dec 28 12:04:52 PST 2009 Goodbye, World!

Mon Dec 28 12:04:52 PST 2009 Hello, World!

Mon Dec 28 12:04:53 PST 2009 Hello, World!

Mon Dec 28 12:04:53 PST 2009 Goodbye, World!

Mon Dec 28 12:04:54 PST 2009 Hello, World!

Mon Dec 28 12:04:54 PST 2009 Goodbye, World!

Mon Dec 28 12:04:55 PST 2009 Hello, World!

Mon Dec 28 12:04:55 PST 2009 Goodbye, World!

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Thread scheduler: runs each thread for a short amount of time

(a time slice)

• Then the scheduler activates another thread

• There will always be slight variations in running times -

especially when calling operating system services (e.g. input

and output)

• There is no guarantee about the order in which threads are

executed

11/3/2010

8

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

What happens if you change the call to the sleep method in the

run method to Thread.sleep(1)?

Answer: The messages are printed about one millisecond

apart.

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

What would be the result of the program if the main method

called

r1.run();

r2.run();

instead of starting threads?

Answer: The first call to run would print ten “Hello”

messages, and then the second call to run would print ten

“Goodbye” messages

11/3/2010

9

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• A thread terminates when its run method terminates

• Do not terminate a thread using the deprecated stop method

• Instead, notify a thread that it should terminate:

 t.interrupt();

•interrupt does not cause the thread to terminate – it sets a

boolean variable in the thread data structure

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• The run method should check occasionally whether it has been

interrupted

• Use the interrupted method

• An interrupted thread should release resources, clean up, and exit:

 public void run()

{

 for (int i = 1;

 i <= REPETITIONS && !Thread.interrupted();

 i++)

 {

 Do work

 }

 Clean up

}

11/3/2010

10

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• The sleep method throws an InterruptedException when

a sleeping thread is interrupted

• Catch the exception

• Terminate the thread :

public void run()

{

 try

 {

 for (int i = 1; i <= REPETITIONS; i++)

 {

 Do work

 Sleep

 }

 }

 catch (InterruptedException exception)

 {

 Clean up

 }

}

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Java does not force a thread to terminate when it is interrupted

• It is entirely up to the thread what it does when it is interrupted

• Interrupting is a general mechanism for getting the thread’s

attention

11/3/2010

11

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Suppose a web browser uses multiple threads to load the images

on a web page. Why should these threads be terminated when

the user hits the “Back” button?

Answer: If the user hits the “Back” button, the current web

page is no longer displayed, and it makes no sense to expend

network resources for fetching additional image data.

