11/1/2010

Compatible with Java 3,6, 87

“ ey

S ORSTMANNL

L

Chapter 17 — Generic Programming

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Chapter Goals

» To understand the objective of generic programming
» To be able to implement generic classes and methods

» To understand the execution of generic methods in the virtual
machine

« To know the limitations of generic programming in Java

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Generic Classes and Type Parameters

» Generic programming: creation of programming constructs
that can be used with many different types

» Generic class: declared with one or more type parameters

* Atype parameter for ArrayList denotes the element type:

public class ArrayList<E>

{
public ArrayList() { . . . }
public void add(E element) { . . . }

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Type Parameters

 Can be instantiated with class or interface type:

ArrayList<Integer>
ArrayList<Iterable>

« Cannot use a primitive type as a type variable:

ArrayList<double> // Wrong!

» Use corresponding wrapper class instead:

ArrayList<Double>

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

11/1/2010

11/1/2010

Type Parameters

« Supplied type replaces type variable in class interface

* Example: add in ArrayList<Integer> has type variable £
replaced with Tnteger:

public void add(Integer element)

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Type Parameters Increase Safety

* Type parameters make generic code safer and easier to read.

* Impossibletoadda String intoan ArraylList<Integer>

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

11/1/2010

Class pair
public class Pair<T, S>
{
private T first;
private S second;
public Pair (T firstElement, S secondElement)
{
first = firstElement;
second = secondElement;
}
public T getFirst() { return first; }
public S getSecond() { return second; }
}

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Syntax 17.1 Declaring a Generic Class

Syntax accessSpecifier class GenericClassName<TypeVariabley, TypeVariabley, . . >
{
instance variables
constrictors
methods
}
Example /73“PF|Y a variable for each type parameter.

public class Pair<T, 5S>
{
private T first; Instance variables with a variable data type
A wethod with a private S second:?

variable return type S
T public T getFirst() { return first; }

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

11/1/2010

Self Check 17.3

How would you use the generic Pair class to construct a pair of
strings "Hello" and "World"?

Answer:

new Pair<String, String>("Hello", "World")

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Self Check 17.4

What can you store in the following data structure?
ArrayList<Pair<String, Integer>>

Example: [(Tom, 1), (Harry, 3)].

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

11/1/2010

Self Check 17.4

What can you store in the following data structure?

Pair<ArrayList<String>, Integer>?

Example: ([Tom, Harry], 1).

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Generic Methods

* Generic method: method with a type variable
» Can be defined inside non-generic classes

« Example: Want to declare a method that can print an array of
any type:

public class ArrayUtil
{

/** Prints all elements in an array.
* @param a the array to print

*/

public <T> static void print (T[] a)
{

}

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

11/1/2010

Generic Methods

Often easier to see how to implement a generic method by
starting with a concrete example; e.g. print the elements in an
array of strings:

public class ArrayUtil
{
public static void print (String[] a)
{
for (String e : a)
System.out.print(e + " ");
System.out.println();

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Generic Methods

* In order to make the method into a generic method:

* Replace string with a type parameter, say £, to denote the element
type

* Supply the type parameters between the method's modifiers and return
type

public static <E> void print(E[] a)
{
for (E e : a)
System.out.print(e + " ");
System.out.println();

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Generic Methods

* What happens when you call a generic method?

Rectangle[] rectangles = . . .;

ArrayUtil.print (rectangles);
» The compiler deduces that £ is Rectangle
* You can also define generic methods that are not static

« Cannot replace type variables with primitive types
e.g.: cannot use the generic print method to print an array of
type int[]

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Syntax 17.2 Defining a Generic Method

Syntax modifiers <TypeVariabley, TypeVariablez, . . .> returnType methodName(parameters)
{
body

Example /Supply the type variable before the return type.

public static <E> void print(E[] a)
{
for (E e : a)
System.out.print{e + " ");
System.out.printin();

Local variable with a
variable data type

}

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

11/1/2010

11/1/2010

Type instantiation

* You cannot instantiate generic types:

public static <E> void fillWithDefaults (E[]
{

a)

for (int 1 = 0; 1 < a.length; 1i++)

ali] = new E(); // ERROR
}

« You cannot construct an array of a generic type:

public class Stack<E>
{

private E[] elements;

public Stack ()
{

elements = new E[MAX SIZE]; // Error
}

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Constraining Type Variables

 Type variables can be constrained with bounds:

public static

<E extends Comparable> E min (E[]
{

a)

E smallest = a[0];
for (int i

1; 1 < a.length; i++)

if (al[i].compareTo(smallest) < 0) smallest = al[i];
return smallest;

}

» Can call min with a string[] array but not with a
Rectangle[] alray

- Comparable bound necessary for calling compareTo

 Otherwise, min method would not have compiled

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Constraining Type Variables

* Very occasionally, you need to supply two or more type bounds:

<E extends Comparable & Cloneable>

* extends, when applied to type variables, actually means
‘extends or implements”

* The bounds can be either classes or interfaces
+ Type variable can be replaced with a class or interface type

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

Wildcard Types

Name Syntax Meaning
Wildcard with lower 5

bound ? extends B Any subtype of B
Wildcard with higher 5

bound ? super B Any supertype of B
Unbounded wildcard ? Any type

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

11/1/2010

10

11/1/2010

Examples of Wildcard Types

e public void addAll (LinkedList<? extends E> other)
{

ListIterator<E> iter = other.listIterator();

while (iter.hasNext()) add(iter.next());
}
e public static <E extends Comparable<E>> E min(E[] a)
e public static <E extends Comparable<? super E>> E min(E[] a)

Big Java by Cay Horstmann
Copyright © 2009 by John Wiley & Sons. All rights reserved.

11

