
11/1/2010

1

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

–

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• To understand the objective of generic programming

• To be able to implement generic classes and methods

• To understand the execution of generic methods in the virtual

machine

• To know the limitations of generic programming in Java

11/1/2010

2

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Generic programming: creation of programming constructs

that can be used with many different types

• Generic class: declared with one or more type parameters

• A type parameter for ArrayList denotes the element type:

public class ArrayList<E>

{

 public ArrayList() { . . . }

 public void add(E element) { . . . }

 . . .

}

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Can be instantiated with class or interface type:

ArrayList<Integer>

ArrayList<Iterable>

• Cannot use a primitive type as a type variable:

ArrayList<double> // Wrong!

• Use corresponding wrapper class instead:

ArrayList<Double>

11/1/2010

3

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Supplied type replaces type variable in class interface

• Example: add in ArrayList<Integer> has type variable E

replaced with Integer:

public void add(Integer element)

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Type parameters make generic code safer and easier to read.

• Impossible to add a String into an ArrayList<Integer>

11/1/2010

4

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

 Pair

public class Pair<T, S>

{

 private T first;

 private S second;

 public Pair(T firstElement, S secondElement)

 {

 first = firstElement;

 second = secondElement;

 }

 public T getFirst() { return first; }

 public S getSecond() { return second; }

}

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

11/1/2010

5

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

How would you use the generic Pair class to construct a pair of

strings "Hello" and "World"?

Answer:

new Pair<String, String>("Hello", "World")

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

What can you store in the following data structure?

 ArrayList<Pair<String, Integer>>

Example: [(Tom, 1), (Harry, 3)].

11/1/2010

6

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

What can you store in the following data structure?

 Pair<ArrayList<String>, Integer>?

Example:([Tom, Harry], 1).

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Generic method: method with a type variable

• Can be defined inside non-generic classes

• Example: Want to declare a method that can print an array of
any type:

public class ArrayUtil

{

 /** Prints all elements in an array.

 * @param a the array to print

 */

 public <T> static void print(T[] a)

 {

 . . .

 }

}

11/1/2010

7

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Often easier to see how to implement a generic method by

starting with a concrete example; e.g. print the elements in an

array of strings:

public class ArrayUtil

{

 public static void print(String[] a)

 {

 for (String e : a)

 System.out.print(e + " ");

 System.out.println();

 }

 . . .

}

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• In order to make the method into a generic method:

• Replace String with a type parameter, say E, to denote the element

type

• Supply the type parameters between the method's modifiers and return

type

public static <E> void print(E[] a)

{

 for (E e : a)

 System.out.print(e + " ");

 System.out.println();

}

11/1/2010

8

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• What happens when you call a generic method?

Rectangle[] rectangles = . . .;

ArrayUtil.print(rectangles);

• The compiler deduces that E is Rectangle

• You can also define generic methods that are not static

• Cannot replace type variables with primitive types
e.g.: cannot use the generic print method to print an array of

type int[]

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

11/1/2010

9

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• You cannot instantiate generic types:

public static <E> void fillWithDefaults(E[] a)

{

 for (int i = 0; i < a.length; i++)

 a[i] = new E(); // ERROR

}

• You cannot construct an array of a generic type:

public class Stack<E>

{

 private E[] elements;

 . . .

 public Stack()

 {

 elements = new E[MAX_SIZE]; // Error

 }

}

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Type variables can be constrained with bounds:

public static <E extends Comparable> E min(E[] a)

{

 E smallest = a[0];

 for (int i = 1; i < a.length; i++)

 if (a[i].compareTo(smallest) < 0) smallest = a[i];

 return smallest;

}

• Can call min with a String[] array but not with a

Rectangle[] array

•Comparable bound necessary for calling compareTo

• Otherwise, min method would not have compiled

11/1/2010

10

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Very occasionally, you need to supply two or more type bounds:

 <E extends Comparable & Cloneable>

• extends, when applied to type variables, actually means

 “extends or implements”

• The bounds can be either classes or interfaces

• Type variable can be replaced with a class or interface type

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Name Syntax Meaning

Wildcard with lower

bound
? extends B Any subtype of B

Wildcard with higher

bound
? super B Any supertype of B

Unbounded wildcard ? Any type

11/1/2010

11

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• public void addAll(LinkedList<? extends E> other)

{

 ListIterator<E> iter = other.listIterator();

 while (iter.hasNext()) add(iter.next());

}

• public static <E extends Comparable<E>> E min(E[] a)

• public static <E extends Comparable<? super E>> E min(E[] a)

