
10/1/2010

1

Chapter 11 – Input/Output and Exception Handling

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• To be able to read and write text files

• To learn how to throw exceptions

• To be able to design your own exception classes

• To understand the difference between checked and unchecked

exceptions

• To know when and where to catch an exception

Chapter Goals

10/1/2010

2

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Simplest way to read text: Use Scanner class

• To read from a disk file, construct a FileReader

• Then, use the FileReader to construct a Scanner object

FileReader reader = new FileReader("input.txt");

Scanner in = new Scanner(reader);

• Use the Scanner methods to read data from file

•next, nextLine, nextInt, and nextDouble

Reading Text Files

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• To write to a file, construct a PrintWriter object:

PrintWriter out = new PrintWriter("output.txt");

• If file already exists, it is emptied before the new data are written

into it

• If file doesn’t exist, an empty file is created

• Use print and println to write into a PrintWriter:

out.println(29.95);

out.println(new Rectangle(5, 10, 15, 25));

out.println("Hello, World!");

• You must close a file when you are done processing it:

out.close();

Otherwise, not all of the output may be written to the disk file

Writing Text Files

10/1/2010

3

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• When the input or output file doesn’t exist, a
FileNotFoundException can occur

• To handle the exception, label the main method like this:

public static void main(String[] args) throws

FileNotFoundException

FileNotFoundException

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Reads all lines of a file and sends them to the output file,

preceded by line numbers

• Sample input file:

Mary had a little lamb

Whose fleece was white as snow.

And everywhere that Mary went,

The lamb was sure to go!

• Program produces the output file:

/* 1 */ Mary had a little lamb

/* 2 */ Whose fleece was white as snow.

/* 3 */ And everywhere that Mary went,

/* 4 */ The lamb was sure to go!

• Program can be used for numbering Java source files

A Sample Program

10/1/2010

4

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

What happens when you supply the same name for the input and
output files to the LineNumberer program?

Answer: When the PrintWriter object is created, the

output file is emptied. Sadly, that is the same file as the input
file. The input file is now empty and the while loop exits

immediately.

Self Check 11.1

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

What happens when you supply the name of a nonexistent input
file to the LineNumberer program?

Answer: The program catches a FileNotFoundException,

prints an error message, and terminates.

Self Check 11.2

10/1/2010

5

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• The next method reads a word at a time:

while (in.hasNext())

{

String input = in.next();

System.out.println(input);

}

• With our sample input, the output is:

Mary

had

a

little

lamb

…

• A word is any sequence of characters that is not white space

Reading Text Input: Reading Words

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Then use the isDigit and isWhitespace methods to find

out where the name ends and the number starts. E.g. locate the

first digit:

int i = 0;

while (!Character.isDigit(line.charAt(i))) { i++; }

• Then extract the country name and population:

String countryName = line.substring(0, i);

String population = line.substring(i);

Reading Text Input: Processing Lines

10/1/2010

6

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Use the trim method to remove spaces at the end of the

country name:

countryName = countryName.trim();

Reading Text Input: Processing Lines

• To convert the population string to a number, first trim it, then
call the Integer.parseInt method:

int populationValue =

Integer.parseInt(population.trim());

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Occasionally easier to construct a new Scanner object to read

the characters from a string:

Scanner lineScanner = new Scanner(line);

• Then you can use lineScanner like any other Scanner

object, reading words and numbers:

String countryName = lineScanner.next();

while (!lineScanner.hasNextInt())

{

countryName = countryName + " " +

lineScanner.next();

}

int populationValue = lineScanner.nextInt();

Reading Text Input: Processing Lines

10/1/2010

7

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• nextInt and nextDouble methods consume white space and

the next number:

double value = in.nextDouble();

• If there is no number in the input, then a
InputMismatchException occurs; e.g.

Reading Text Input: Reading Numbers

• To avoid exceptions, use the hasNextDouble and

hasNextInt methods to screen the input:

if (in.hasNextDouble())

{

double value = in.nextDouble();

. . .

}

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• nextInt and nextDouble methods do not consume the white

space that follows a number

• Example: file contains student IDs and names in this format:

1729

Harry Morgan

1730

Diana Lin

. . .

• Read the file with these instructions:

while (in.hasNextInt())

{

int studentID = in.nextInt();

String name = in.nextLine();

Process the student ID and name

}

Reading Text Input: Reading Numbers

10/1/2010

8

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• The call to nextLine reads an empty string! The remedy is to

add a call to nextLine after reading the ID:

int studentID = in.nextInt();

in.nextLine(); // Consume the newline

String name = in.nextLine();

Reading Text Input: Reading Numbers

• Initially, the input contains

• After the first call to nextInt, the input contains

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Suppose the input contains the characters 6,995.0. What is the

value of number and input after these statements?

int number = in.nextInt();

String input = in.next();

Answer: number is 6, input is ",995.0".

Self Check 11.3

10/1/2010

9

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Suppose the input contains the characters 6,995.00 12. What

is the value of price and quantity after these statements?

double price = in.nextDouble();

int quantity = in.nextInt();

Answer: price is set to 6 because the comma is not

considered a part of a floating-point number in Java. Then the
call to nextInt causes an exception, and quantity is not

set.

Self Check 11.4

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Your input file contains a sequence of numbers, but sometimes a

value is not available and marked as N/A. How can you read the

numbers and skip over the markers?

Answer: Read them as strings, and convert those strings to

numbers that are not equal to N/A:

String input = in.next();

if (!input.equals("N/A"))

{

double value = Double.parseDouble(input);

Process value

}

Self Check 11.5

10/1/2010

10

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Throw an exception object to signal an exceptional condition

• Example: IllegalArgumentException: Illegal parameter

value:

IllegalArgumentException exception

= new IllegalArgumentException("Amount exceeds

balance");

throw exception;

• No need to store exception object in a variable:

throw new IllegalArgumentException("Amount exceeds

balance");

• When an exception is thrown, method terminates immediately

• Execution continues with an exception handler

Throwing Exceptions

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

public class BankAccount

{

public void withdraw(double amount)

{

if (amount > balance)

{

IllegalArgumentException exception

= new IllegalArgumentException("Amount

exceeds balance");

throw exception;

}

balance = balance - amount;

}

...

}

Example

10/1/2010

11

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Hierarchy of Exception Classes

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Syntax 11.1 Throwing an Exception

10/1/2010

12

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

How should you modify the deposit method to ensure that the

balance is never negative?

Answer: Throw an exception if the amount being deposited is

less than zero.

Self Check 11.6

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Suppose you construct a new bank account object with a zero
balance and then call withdraw(10). What is the value of

balance afterwards?

Answer: The balance is still zero because the last statement

of the withdraw method was never executed.

Self Check 11.7

10/1/2010

13

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Two types of exceptions:

• Checked

o The compiler checks that you don’t ignore them

o Due to external circumstances that the programmer cannot prevent

o Majority occur when dealing with input and output

o For example, IOException

• Unchecked

o Extend the class RuntimeException or Error

o They are the programmer’s fault

o Examples of runtime exceptions:

NumberFormatException

IllegalArgumentException

NullPointerException

o Example of error:

OutOfMemoryError

Checked and Unchecked Exceptions

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Categories aren’t perfect:

• Scanner.nextInt throws unchecked InputMismatchException

• Programmer cannot prevent users from entering incorrect input

• This choice makes the class easy to use for beginning programmers

• Deal with checked exceptions principally when programming

with files and streams

• For example, use a Scanner to read a file:

String filename = ...;

FileReader reader = new FileReader(filename);

Scanner in = new Scanner(reader);

• But, FileReader constructor can throw a

FileNotFoundE`xception

Checked and Unchecked Exceptions

10/1/2010

14

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Two choices:
1. Handle the exception

2. Tell compiler that you want method to be terminated when the exception

occurs

• Use throws specifier so method can throw a checked exception

public void read(String filename) throws

FileNotFoundException

{

FileReader reader = new FileReader(filename);

Scanner in = new Scanner(reader);

...

}

• For multiple exceptions:

public void read(String filename)

throws IOException, ClassNotFoundException

Checked and Unchecked Exceptions

Continued

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Keep in mind inheritance hierarchy: If method can throw an

IOException and FileNotFoundException, only use IOException

• Better to declare exception than to handle it incompetently

Checked and Unchecked Exceptions (cont.)

10/1/2010

15

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Syntax 11.2 throws Clause

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Suppose a method calls the Scanner constructor, which can

throw a FileNotFoundException, and the nextInt method of

the Scanner class, which can cause a

NoSuchElementException or InputMismatchException.

Which exceptions should be included in the throws clause?

Answer: You must include the FileNotFoundException and

you may include the NoSuchElementException if you consider

it important for documentation purposes.
InputMismatchException is a subclass of

NoSuchElementException. It is your choice whether to include

it.

Self Check 11.8

10/1/2010

16

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Why is a NullPointerException not a checked exception?

Answer: Because programmers should simply check for null

pointers instead of trying to handle a
NullPointerException.

Self Check 11.9

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Install an exception handler with try/catch statement

• try block contains statements that may cause an exception

• catch clause contains handler for an exception type

Catching Exceptions

Continued

10/1/2010

17

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Example:

try

{

String filename = ...;

FileReader reader = new FileReader(filename);

Scanner in = new Scanner(reader);

String input = in.next();

int value = Integer.parseInt(input);

...

}

catch (IOException exception)

{

exception.printStackTrace();

}

catch (NumberFormatException exception)

{

System.out.println("Input was not a number");

}

Catching Exceptions

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Statements in try block are executed

• If no exceptions occur, catch clauses are skipped

• If exception of matching type occurs, execution jumps to catch

clause

• If exception of another type occurs, it is thrown until it is caught
by another try block

• catch (IOException exception) block

• exception contains reference to the exception object that was thrown

• catch clause can analyze object to find out more details

• exception.printStackTrace(): Printout of chain of method calls that

lead to exception

Catching Exceptions

10/1/2010

18

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Syntax 11.3 Catching Exceptions

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Suppose the file with the given file name exists and has no
contents. Trace the flow of execution in the try block in this

section.

Answer: The FileReader constructor succeeds, and in is

constructed. Then the call in.next() throws a

NoSuchElementException, and the try block is aborted.

None of the catch clauses match, so none are executed. If

none of the enclosing method calls catch the exception, the

program terminates.

Self Check 11.10

10/1/2010

19

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Is there a difference between catching checked and unchecked

exceptions?

Answer: No — you catch both exception types in the same

way, as you can see from the above code example. Recall that
IOException is a checked exception and

NumberFormatException is an unchecked exception.

Self Check 11.11

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Exception terminates current method

• Danger: Can skip over essential code

• Example:

reader = new FileReader(filename);

Scanner in = new Scanner(reader);

readData(in);

reader.close(); // May never get here

• Must execute reader.close() even if exception happens

• Use finally clause for code that must be executed ―no matter

what‖

The finally Clause

10/1/2010

20

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

FileReader reader = new FileReader(filename);

try

{

Scanner in = new Scanner(reader);

readData(in);

}

finally

{

reader.close();

// if an exception occurs, finally clause

// is also executed before exception

// is passed to its handler

}

The finally Clause

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Executed when try block is exited in any of three ways:

1. After last statement of try block

2. After last statement of catch clause, if this try block caught an

exception

3. When an exception was thrown in try block and not caught

• Recommendation: Don’t mix catch and finally clauses in

same try block

The finally Clause

10/1/2010

21

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Syntax 11.4 finally Clause

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Why was the out variable declared outside the try block?

Answer: If it had been declared inside the try block, its scope

would only have extended to the end of the try block, and the

finally clause could not have closed it.

Self Check 11.12

10/1/2010

22

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Suppose the file with the given name does not exist. Trace the

flow of execution of the code segment in this section.

Answer: The PrintWriter constructor throws an exception.

The assignment to out and the try block are skipped. The

finally clause is not executed. This is the correct behavior

because out has not been initialized.

Self Check 11.13

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• You can design your own exception types — subclasses of
Exception or RuntimeException

• if (amount > balance)

{

throw new InsufficientFundsException(

"withdrawal of " + amount + " exceeds balance of "

+ balance);

}

• Make it an unchecked exception — programmer could have
avoided it by calling getBalance first

• Extend RuntimeException or one of its subclasses

• Supply two constructors

1. Default constructor

2. A constructor that accepts a message string describing reason for

exception

Designing Your Own Exception Types

10/1/2010

23

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

public class InsufficientFundsException

extends RuntimeException

{

public InsufficientFundsException() {}

public InsufficientFundsException(String message)

{

super(message);

}

}

Designing Your Own Exception Types

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

What is the purpose of the call super(message) in the second

InsufficientFundsException constructor?

Answer: To pass the exception message string to the
RuntimeException superclass.

Self Check 11.14

10/1/2010

24

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Suppose you read bank account data from a file. Contrary to your
expectation, the next input value is not of type double. You

decide to implement a BadDataException. Which exception

class should you extend?

Answer: Because file corruption is beyond the control of the

programmer, this should be a checked exception, so it would
be wrong to extend RuntimeException or

IllegalArgumentException. Because the error is related

to input, IOException would be a good choice.

Self Check 11.15

