
9/28/2010

1

Chapter 12 – Object-Oriented Design

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• To learn about the software life cycle

• To learn how to discover new classes and methods

• To understand the use of CRC cards for class discovery

• To be able to identify inheritance, aggregation, and dependency

relationships between classes

• To master the use of UML class diagrams to describe class

relationships

• To learn how to use object-oriented design to build complex

programs

Chapter Goals

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

9/28/2010

2

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Encompasses all activities from initial analysis until

obsolescence

• Formal process for software development

• Describes phases of the development process

• Gives guidelines for how to carry out the phases

• Development process

• Analysis

• Design

• Implementation

• Testing

• Deployment

The Software Life Cycle

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Decide what the project is supposed to do

• Do not think about how the program will accomplish tasks

• Output: Requirements document

• Describes what program will do once completed

• User manual: Tells how user will operate program

• Performance criteria

Analysis

9/28/2010

3

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Plan how to implement the system

• Discover structures that underlie problem to be solved

• Decide what classes and methods you need

• Output:

• Description of classes and methods

• Diagrams showing the relationships among the classes

Design

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Write and compile the code

• Code implements classes and methods discovered in the design

phase

• Program Run: Completed program

Implementation

9/28/2010

4

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Run tests to verify the program works correctly

• Program Run: A report of the tests and their results

Testing

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Users install program

• Users use program for its intended purpose

Deployment

9/28/2010

5

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Sequential process of analysis, design, implementation, testing,

and deployment

• When rigidly applied,

waterfall model did not

work

The Waterfall Model

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Breaks development process down into multiple phases

• Early phases focus on the construction of prototypes

• Lessons learned from development of one prototype can be

applied to the next iteration

The Spiral Model

9/28/2010

6

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

The Spiral Model

• Problem: Can lead to many iterations, and process can take too

long to complete

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Development process methodology by the inventors of UML

Activity Levels in the Rational Unified Process

9/28/2010

7

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Strives for simplicity

• Removes formal structure

• Focuses on best practices

Extreme Programming

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Realistic planning

• Customers make business decisions

• Programmers make technical decisions

• Update plan when it conflicts with reality

• Small releases

• Release a useful system quickly

• Release updates on a very short cycle

• Metaphor

• Programmers have a simple shared story that explains the system

Extreme Programming

9/28/2010

8

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Simplicity

• Design as simply as possible instead of preparing for future complexities

• Testing

• Programmers and customers write test cases

• Test continuously

• Refactoring

• Restructure the system continuously to improve code and eliminate

duplication

Extreme Programming

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Pair programming

• Two programmers write code on the same computer

• Collective ownership

• All programmers can change all code as needed

• Continuous integration

• Build the entire system and test it whenever a task is complete

Extreme Programming

9/28/2010

9

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• 40-hour week

• Don’t cover up unrealistic schedules with heroic effort

• On-site customer

• A customer is accessible to the programming team at all times

• Coding standards

• Follow standards that emphasize self-documenting code

Extreme Programming

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Suppose you sign a contract, promising that you will, for an

agreed-upon price, design, implement, and test a software

package exactly as it has been specified in a requirements

document. What is the primary risk you and your customer are

facing with this business arrangement?

Answer: It is unlikely that the customer did a perfect job with

the requirements document. If you don’t accommodate

changes, your customer may not like the outcome. If you

charge for the changes, your customer may not like the cost.

Self Check 12.1

9/28/2010

10

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Does Extreme Programming follow a waterfall or a spiral model?

Answer: An “extreme” spiral model, with lots of iterations.

Self Check 12.2

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

What is the purpose of the “on-site customer” in Extreme

Programming?

Answer: To give frequent feedback as to whether the current

iteration of the product fits customer needs.

Self Check 12.3

9/28/2010

11

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

1. Discover classes

2. Determine responsibilities of each class

3. Describe relationships between the classes

Object-Oriented Design

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• A class represents some useful concept

• Concrete entities: Bank accounts, ellipses, and products

• Abstract concepts: Streams and windows

• Find classes by looking for nouns in the task description

• Define the behavior for each class

• Find methods by looking for verbs in the task description

Discovering Classes

9/28/2010

12

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Example: Invoice

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Classes that come to mind: Invoice, LineItem, and

Customer

• Good idea to keep a list of candidate classes

• Brainstorm, simply put all ideas for classes onto the list

• You can cross not useful ones later

Example: Invoice

9/28/2010

13

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Keep the following points in mind:

• Class represents set of objects with the same behavior

o Entities with multiple occurrences in problem description are good

candidates for objects

o Find out what they have in common

o Design classes to capture commonalities

• Represent some entities as objects, others as primitive types

o Should we make a class Address or use a String?

• Not all classes can be discovered in analysis phase

• Some classes may already exist

Finding Classes

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Describes a class, its responsibilities, and its collaborators

• Use an index card for each class

• Pick the class that should be responsible for each method (verb)

• Write the responsibility onto the class card

CRC Card

Continued

9/28/2010

14

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

CRC Card

• Indicate what other classes are needed to fulfill responsibility

(collaborators)

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Suppose the invoice is to be saved to a file. Name a likely

collaborator.

Answer: PrintStream

Self Check 12.4

9/28/2010

15

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Looking at the invoice in Figure 4, what is a likely responsibility of
the Customer class?

Answer: To produce the shipping address of the customer.

Self Check 12.5

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

What do you do if a CRC card has ten responsibilities?

Answer: Reword the responsibilities so that they are at a

higher level, or come up with more classes to handle the

responsibilities.

Self Check 12.6

9/28/2010

16

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Inheritance

• Aggregation

• Dependency

Relationships Between Classes

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Is-a relationship

• Relationship between a more general class (superclass) and a

more specialized class (subclass)

• Every savings account is a bank account

• Every circle is an ellipse (with equal width and height)

• It is sometimes abused

• Should the class Tire be a subclass of a class Circle?

o The has-a relationship would be more appropriate

Inheritance

9/28/2010

17

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Has-a relationship

• Objects of one class contain references to objects of another

class

• Use an instance variable

• A tire has a circle as its boundary:

class Tire

{

...

private String rating;

private Circle boundary;

}

• Every car has a tire (in fact, it has four)

Aggregation

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Example

class Car extends Vehicle

{

...

private Tire[] tires;

}

9/28/2010

18

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Uses relationship

• Example: Many of our applications depend on the Scanner

class to read input

• Aggregation is a stronger form of dependency

• Use aggregation to remember another object between method

calls

Dependency

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Relationship Symbol Line Style Arrow Tip

Inheritance Solid Triangle

Interface Implementation Dotted Triangle

Aggregation Solid Diamond

Dependency Dotted Open

UML Relationship Symbols

9/28/2010

19

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Consider the Bank and BankAccount classes of Chapter 7. How

are they related?

Answer: Through aggregation. The bank manages bank

account objects.

Self Check 12.7

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Consider the BankAccount and SavingsAccount objects of

Chapter 10. How are they related?

Answer: Through inheritance.

Self Check 12.8

9/28/2010

20

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley &

Sons. All rights reserved.

Consider the BankAccountTester class of Chapter 3. Which

classes does it depend on?

Answer: The BankAccount, System, and PrintStream

classes.

Self Check 12.9

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Attributes and Methods in UML Diagrams

9/28/2010

21

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• any number (zero or more): *

• one or more: 1..*

• zero or one: 0..1

• exactly one: 1

Multiplicities

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Association: More general relationship between classes

• Use early in the design phase

• A class is associated with another if you can navigate from

objects of one class to objects of the other

• Given a Bank object, you can navigate to Customer objects

Aggregation and Association

9/28/2010

22

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

1. Gather requirements

2. Use CRC cards to find classes, responsibilities, and

collaborators

3. Use UML diagrams to record class relationships

4. Use javadoc to document method behavior

5. Implement your program

Five-Part Development Process

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Task: Print out an invoice

• Invoice: Describes the charges for a set of products in certain

quantities

• Omit complexities

• Dates, taxes, and invoice and customer numbers

• Print invoice

• Billing address, all line items, amount due

• Line item

• Description, unit price, quantity ordered, total price

• For simplicity, do not provide a user interface

• Test program: Adds line items to the invoice and then prints it

Case Study: Printing an Invoice — Requirements

9/28/2010

23

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

I N V O I C E

Sam’s Small Appliances

100 Main Street

Anytown, CA 98765

Description Price Qty Total

Toaster 29.95 3 89.85

Hair dryer 24.95 1 24.95

Car vacuum 19.99 2 39.98

AMOUNT DUE: $154.78

Case Study: Sample Invoice

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Discover classes

• Nouns are possible classes:

Invoice

Address

LineItem

Product

Description

Price

Quantity

Total

Amount Due

Case Study: Printing an Invoice — CRC Cards

9/28/2010

24

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Analyze classes:

Invoice

Address

LineItem // Records the product and the quantity

Product

Description // variable of the Product class

Price // variable of the Product class

Quantity // Not an attribute of a Product

Total // Computed – not stored anywhere

Amount Due // Computed – not stored anywhere

• Classes after a process of elimination:

Invoice

Address

LineItem

Product

Case Study: Printing an Invoice — CRC Cards

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

CRC Cards for Printing Invoice

Invoice and Address must be able to format themselves:

9/28/2010

25

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Add collaborators to invoice card:

CRC Cards for Printing Invoice

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

CRC Cards for Printing Invoice

Product and LineItem CRC cards:

9/28/2010

26

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

CRC Cards for Printing Invoice

Invoice must be populated with products and quantities:

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

Printing an Invoice — UML Diagrams

9/28/2010

27

Big Java by Cay Horstmann

Copyright © 2009 by John Wiley & Sons. All rights reserved.

• Use javadoc documentation to record the behavior of the

classes

• Leave the body of the methods blank

• Run javadoc to obtain formatted version of documentation in

HTML format

• Advantages:

• Share HTML documentation with other team members

• Format is immediately useful: Java source files

• Supply the comments of the key methods

Printing an Invoice — Method Documentation

