
Linked List Implementation

Checkout LinkedLists project from SVN

Understanding the
engineering trade-offs when
storing data

 Efficient ways to store data based on how
we’ll use it

 The main theme for the last 1/6 of the course

 So far we’ve seen ArrayLists
◦ Fast addition to end of list

◦ Fast access to any existing position

◦ Slow inserts to and deletes from middle of list

Q16

 What if we have to add/remove data from a
list frequently?

 A LinkedList supports this:
◦ Fast insertion and removal of elements

 Once we know where they go

◦ Slow access to arbitrary elements

data

data

data

data

data null

Insertion, per Wikipedia

“random access”

Q17,18

 void addFirst(E element)

E getFirst()

E removeFirst()

 E get(int k)

 What if you want to access the rest of the list?

Iterator<E> iterator()

◦ An iterator<E> has methods:

 boolean hasNext()

 E next()

 E remove()

What would you expect the run-time

of these operations to be?

Answer: O(1) [do you see why?]

What would you expect the run-time of this operation to be,

in terms of k? For a worst-case value of k?

Answer: O(k) to get the kth element, worst-case is O(n)

where n is the length of the list [do you see why?]

What do you think these methods do?

In particular, what element should

remove remove?

What would you expect the run-times

of these operation to be?

Answer: O(1) [do you see why?]

Enhanced For Loop What Compiler Generates

for (String s : list) {

// do something

}

Iterator<String> iter =

list.iterator();

while (iter.hasNext()) {

String s = iter.next();

// do something

}

 A simplified version, with just the essentials

 Won’t implement the java.util.List interface

 Will have the usual linked list behavior
◦ Fast insertion and removal of elements

 Once we know where they go

◦ Slow random access

 This is much of today’s homework.

Node

E data

Node next

Node(E data)

ListIterator<E>

Node position

boolean hasNext()
E next()

void remove()

void add(E data)

MyLinkedList<E>

Node first

void addFirst(E data)

E getFirst()

E removeFirst()

int length()

firstNode, and from

there many Nodes

If firstNode

is null,

what does

that mean?

position: the Node most recently

returned by next.

If position is null,

what does that mean?

Node is a recursive

data structurejava.util.LinkedList

has many more

methods

 Boil down data types (e.g., lists) to their
essential operations

 Choosing a data structure for a project then
becomes:
◦ Identify the operations needed

◦ Identify the abstract data type that most efficiently
supports those operations

 Goal: that you understand several basic
abstract data types and when to use them

 Array List

 Linked List

 Stack

 Queue

 Set

 Map

Implementations for all of
these are provided by the Java
Collections Framework in the
java.util package.

Operations
Provided

Array List
Efficiency

Linked List
Efficiency

Random access O(1) O(n)

Add/remove item O(n) O(1)

 A last-in, first-out (LIFO) data structure

 Real-world stacks
◦ Plate dispensers in the cafeteria

◦ Pancakes!

 Some uses:
◦ Tracking paths through a maze

◦ Providing “unlimited undo” in an application

Operations
Provided

Efficiency

Push item O(1)

Pop item O(1)

Implemented by
Stack, LinkedList,
and ArrayDeque in
Java

 A first-in, first-out (FIFO) data structure

 Real-world queues
◦ Waiting line at the BMV

◦ Character on Star Trek TNG

 Some uses:
◦ Scheduling access to shared resource (e.g., printer)

Operations
Provided

Efficiency

Enqueue item O(1)

Dequeue item O(1)

Implemented by
LinkedList and
ArrayDeque in Java

 Unordered collections without duplicates

 Real-world sets
◦ Students

◦ Collectibles

 Some uses:
◦ Quickly checking if an item is in a collection

Operations HashSet TreeSet

Add/remove item O(1) O(log n)

Contains? O(1) O(log n)

Can hog space Sorts items!

 Associate keys with values

 Real-world “maps”
◦ Dictionary

◦ Phone book

 Some uses:
◦ Associating student ID with transcript

◦ Associating name with high scores

Operations HashMap TreeMap

Insert key-value pair O(1) O(log n)

Look up value for key O(1) O(log n)

Can hog space Sorts items by key!

