
Sorting Algorithms

Algorithm Analysis and Big-O

Function Objects and the Comparator Interface

Checkout SortingAndSearching project from SVN

Exam solutions posted

A

B

C

A

B

C

A

B

C

In A:
B b = new B(…);

C c = new C(b, …);

In A:
C c = new C(…);

B b = new B(c, …);

In A:
B b = new B(…);

C c = new C(…);

b.setC(c);

c.setB(b);

In B (and likewise C):

public void setC(C c) {

this.c = c;

}

Let’s see…

Remember
Shlemiel the Painter

 Be able to describe basic sorting algorithms:
◦ Selection sort

◦ Insertion sort

◦ Merge sort

 Know the run-time efficiency of each

 Know the best and worst case inputs for each

 Profiling: collecting data on the run-time
behavior of an algorithm

 How long does selection sort take on:
◦ 10,000 elements?

◦ 20,000 elements?

◦ …

◦ 80,000 elements?

 O(n2)

Q1-3

 In analysis of algorithms we care about
differences between algorithms on very large
inputs

 We say, “selection sort takes on the order of
n2 steps”

 Big-Oh gives a formal definition for
“on the order of”

 Formal:
◦ We say that f(n) is O(g(n)) if and only if
◦ there exist constants c and n0 such that
◦ for every n ≥ n0 we have
◦ f(n) ≤ c × g(n)

 Informal:
◦ f(n) is roughly proportional

to g(n), for large n

 Example: 7n3 + 24n2 + 3000n + 45 is O(n3)
◦ Because it is ≤ 3,077 × n3 for all n ≥ 1

 Formal:

◦ We say that f(n) is O(g(n)) if and only if

◦ there exist constants c and n0 such that

◦ for every n ≥ n0 we have

◦ f(n) ≤ c × g(n)

 Polynomials: keep the highest
power, discard its coefficient

◦ 34n5 + 20n2 + 10000

is O(n5)

 More generally:
1. Discard all multiplicative constants

2. Pick the “dominating” additive
expression per chart to the right,
discard other additive terms

30n2 + 4n3 log n
+ 45n + 70n3 + 85

is O(n3 log n)
Q4-5

 Basic idea:
◦ Think of the list as having a sorted part (at the

beginning) and an unsorted part (the rest)

◦ Get the first number in the
unsorted part

◦ Insert it into the correct
location in the sorted part,
moving larger values up to
make room

Repeat until
unsorted part is
empty

 Profile insertion sort

 Analyze the worst case

◦ Assume that the inner loop runs as many times as it can

◦ Count the number of times compareTo is executed

◦ What input causes this worst-case behavior

 Analyze the best case

◦ Assume that the inner loop runs as few times as it can

◦ Count the number of times compareTo is executed

◦ What input causes this best-case behavior

 Does the input affect insertion sort?

Q6-13b

Ask for help if
you’re stuck!

Handy Fact

 For searching unsorted data, what’s the worst
case number of comparisons we would have
to make?

 A divide and conquer strategy

 Basic idea:
◦ Divide the list in half

◦ Should result be in first or second half?

◦ Recursively search that half

 What’s the best case?

 What’s the worst case?

Q14

Perhaps it’s time for a break.

 Basic recursive idea:
◦ If list is length 0 or 1, then it’s already sorted

◦ Otherwise:

 Divide list into two halves

 Recursively sort the two halves

 Merge the sorted halves back together

 Let’s profile it…

Q13c, 15

If list is length 0 or 1,
then it’s already sorted

 Otherwise:

◦ Divide list into two halves

◦ Recursively sort the two halves

◦ Merge the sorted halves back together

Merge n/4

items

Merge n/4

items

Merge n/4

items

Merge n/4

items

Merge n items

Merge n/2 items Merge n/2 items

Merge 2

items

Merge 2

items

Merge 2

items

Merge 2

itemsetc

etc

n items merged

n items merged

n items

merged

n items

merged

etc

Another way of creating
reusable code

 Java libraries provide efficient sorting
algorithms
◦ Arrays.sort(…) and Collections.sort(…)

 But suppose we want to sort by something
other than the “natural order” given by

compareTo()

 Function Objects to the rescue!

 Objects defined to just “wrap up” functions so
we can pass them to other (library) code

 We’ve been using these for awhile now
◦ Can you think where?

 For sorting we can create a function object
that implements Comparator

http://java.sun.com/javase/6/docs/api/java/util/Comparator.html

Understanding the
engineering trade-offs when
storing data

 Efficient ways to store data based on how
we’ll use it

 So far we’ve seen ArrayLists
◦ Fast addition to end of list

◦ Fast access to any existing position

◦ Slow inserts to and deletes from middle of list

Q16

 What if we have to add/remove data from a
list frequently?

 LinkedLists support this:
◦ Fast insertion and removal of elements

 Once we know where they go

◦ Slow access to arbitrary elements

Q17,18

data

data

data

data

data null

Insertion, per Wikipedia

 Implementing ArrayList and LinkedList

 A tour of some data structures

 Some VectorGraphics work time

