
Recursion

Checkout Recursion project from SVN

 By Douglas
Hofstadter

 Argues that
intelligence arises
(in part) because of
our ability to think
about thinking

 A solution technique where the same
computation occurs repeatedly
as the problem is solved

recurs

For example, a

ShapeDrawer might have:

1

 If each red block has
area 1, what is the area
A(n) of the Triangle
whose width is n?
◦ Answer:

A(n) = n + A(n-1)

 The above holds for
what n ? What is the
answer for other n ?
◦ Answer: The recursive

equation holds for
n > 1.
For n = 1, the area is 1.

Triangle with width 1

Triangle with width 2

Triangle with width 3

Triangle with width 4

Let’s see how this translates naturally to code.

Then let’s trace the execution of the code (next slide).
Q1

Thanks for
David Gries for
this technique

parameters
and local variables

method name, line number scope box

1. Draw box when method starts

2. Fill in name and first line no.

3. Write class name (for
static method) or draw
reference to object (for
non-static method)

4. List every parameter
and its argument value.

5. List every local variable declared
in the method, but no values yet

6. Step through the method, update the line number
and variable values, draw new frame for new calls

7. “Erase” the frame when the method is done. Q2-9

I may have also tossed
one of a pair of
teleportation rings into
the ocean with
interesting results.

 Always have a base case that doesn’t recurse

 Make sure recursive case always makes
progress, by solving a smaller problem

 You gotta believe
◦ Trust in the recursive solution

◦ Just consider one step at a time

 Add a recursive method to
Sentence for computing whether
Sentence is a palindrome

◦ A palindrome is a String that is
the same backwards as forwards

 We will ignore punctuation, spaces, and case.

◦ Key idea: use the definition of isPalindrome()
in defining isPalindrome() . How can we
make progress to a smaller problem?

◦ Here,
x.isPalindrome() iff
___.isPalindrome() _____________?

◦ x.isPalindrome() iff
xMinusFirstAndLastLetter.isPalindrome() and _____________?

Sentence

String text

String toString()
boolean equals()
boolean isPalindrome

Examples of palindromes from
http://www.fun-with-

words.com/palin_example.html

Never odd or even

Murder for a jar of red rum

May a moody baby doom a yam?

Go hang a salami; I'm a lasagna hog!

Oozy rat in a sanitary zoo

Do geese see God?

x.isPalindrome() iff xMinusFirstAndLastLetter.isPalindrome()

and first letter equals last letter

Don’t worry about punctuation, spaces

and case at this point of your thinking.

Q10

http://www.fun-with-words.com/palin_example.html
http://www.fun-with-words.com/palin_example.html
http://www.fun-with-words.com/palin_example.html
http://www.fun-with-words.com/palin_example.html
http://www.fun-with-words.com/palin_example.html

 Our isPalindrome() makes lots of new
Sentence objects

 We can make it better with a “recursive helper
method”
Many recursive problems require a helper method

public boolean isPalindrome() {

return isPalindrome(0, this.text.length() – 1);

}

Position of first letter of the

remaining String to check

Position of last letter of the

remaining String to check

 Reverse a string…recursively!

 A recursive helper can make this really short!

 “If you already know what recursion is, just
remember the answer. Otherwise, find
someone who is standing closer to Douglas
Hofstadter than you are; then ask him or her
what recursion is.”

—Andrew Plotkin

private void drawSierpinski(Graphics2D g,

double left, double bottom,

double base) {

// TODO Don't forget your base case

// Draws the first equilateral triangle

// called for by the algorithm.

Point2D p1 = new Point2D.Double(

left, bottom);

Point2D p2 = new Point2D.Double(

left + base, bottom);

Point2D p3 = new Point2D.Double(

left + base / 2.0,

bottom – base * HEIGHT_TO_BASE_RATIO);

Shape triangle = makeTriangle(

p1, p2, p3);

g.setColor(Color.RED);

g.fill(triangle);

// TODO Implement rest of this method.

}

 Factorial:

 Ackermann function:

Base Case

Recursive step

Q11-14

Work on VectorGraphics with
your team

• Cycle 1 code and status report
and Cycle 2 user stories are due
Tuesday.

•Or work on recursion
problems, due Thursday

Exam 2 is next Friday

morning. Major topics are:

• UML class diagrams

and how to implement them

• event-driven programming

• GUI programming

• polymorphism

• interfaces

• inheritance

• recursion

